Vorobey E. S., Voronkova O. S., Vinnikov A. I., Kovalenko S. M., Shmatko G. P.

Effect of Therapeutic Bacteriophage Drugs on Staphylococcus Aureus Biofilm


About the author:

Vorobey E. S., Voronkova O. S., Vinnikov A. I., Kovalenko S. M., Shmatko G. P.

Heading:

MICROBIOLOGY

Type of article:

Scentific article

Annotation:

As a result of the study of 12 strains of Staphylococcus aureus, isolated from the reproductive tract of women, were determined their ability to form biofilm, susceptibility to commercial bacteriophages drugs and influ-ence of phages on the filmformation process by metod of optical density of biofilms measurement. Study of the staphylococcal bacteriophage liquid effects on filmformation process of sensitive strains showed that use of phage at all stages of culture development optical density of formed biofilms decreased compare control. So under the phage use optical density values decreased to 80. 5% compare to control daily biofilm without phage influence (100%). Adding phage on a daily biofilm optical density values decreased to 61. 0% to control of 48-hour biofilms. Adding the drug to 48-hour biofilm optical density value decreased to 57. 0% of 72-hour control biofilms. A similar situation was observed under adding of phage to 72-hour biofilm. Optical density values decreased to 66. 9% of 72-hour control biofilms. Study of the intesti – bacteriophage liquid influence on filmformation of experimental strains also showed significant inhibition of biofilms growth. So, under phage use optical density values decreased to 82. 5% com-pare to control daily biofilm without bacteriophage (100%). Adding phage on a daily biofilm optical density values decreased to 55. 6% of 48-hour control biofilm, respectively. Using of drug for 48-hour biofilm decreased optical density value to 49. 3% of 72-hour control biofilms. Adding intesti – bacteriophage to 72-hour biofilm also make decreasing of optical density values decreased to 54. 2% of 72-hour control biofilms. Piobakteriophage polyvalent also showed the significant effect on the sensitive filmforming strains. Adding drug during inoculation optical density forformed biofilms decreased to 77. 6% of the control daily biofilm (100%). Add-ing phage on a daily biofilm decreased optical density values to 51. 7% of 48-hour control biofilms. Using the drug for 48-hour biofilm had a decrease of optical density values to 57. 3% of 72-hour control biofilms. Adding of phage to already formed 72-hour biofilm showed the decrease to 64. 4% of 72-hour control biofilms. Among studied preparates of phages the most effective was intesti – bacteriophage liquid, influence of that dur-ing 24-hour on biofilm at different stages of incubation made decrease to 49. 3% compare to the control growthing biofilm. Therefore, all used preparates of bacteriophages made influence on film formation process of sensitive strains by significantly reducing the formed biofilms growth. That demonstrates the benefitions of bacteriophages using for the treatment of infectious diseases associated with pathogens able to biofilm formation.

Tags:

staphylococci, film formation, microbial biofilms, bacteriophages, regulation of biofilm growth

Bibliography:

  • 1. Определитель бактерий Берджи в 2-х тт: пер. с англ. / Под ред. Дж. Хоулта, Н. Крига, П. Снита, Дж. Стейли, С. Уил-льямса. – Москва: Мир, 1997. – Т. 2. – 368 с.
  • 2. Практическое руководство по антиинфекционной химиотерапии / Под ред. Л. С. Страчунского, ю. Б. Белоусова, С. Н. Козлова. – Смоленск: МАКМАХ, 2007. – 464 с.
  • 3. Руководство по медицинской микробиологии. Общая и санитарная микробиология. – Кн. 1 / Колл. авторов / Под ред. А. С. Лабинской, Е. Г. Волиной. – М: БИНОМ, 2008. – 1080с.
  • 4. Adams M. H. An enzyme produced by a phage-host cell system II. The properties of the polysaccharide depolymerase / M. H. Adams, B. H. Park // Virology. – 1956. – Vol. 2. – P. 719-736.
  • 5. Agarwal A. Medical significance and management of staphylococcal biofilm / A. Agarwal, K. P. Singh, A. Jain // FEMS Immunol. Med. Microbiol. – 2010. – Vol. 58, №2. – P. 147-160.
  • 6. Azeredo J. The use of phages for the removal of infectious biofilms / J. Azeredo, I. W. Sutherland // Current Pharmaceutical Biorecilmotogy. – 2008. – Vol. 9. – P. 261-266.
  • 7. Brady R. A. Osteomyelitis and the role of biofilm in chronic infection FEMS / R. A. Brady, J. G. Leid, J. H. Calhoun [et al.] // Immunol. Med. Microbiol. – 2008. – Vol. 52. – P. 13-22.
  • 8. Damborg P. Structural variations of staphylococcal cassette chromosome mec type IVa in Staphylococcus aureus clonal complex 8 and unrelated lineages / P. Damborg, M. D. Bartels, K. Boye [et al.] // Antimicrob. Agents Chemother. – 2011. – Vol. 55(8). – P. 3932-3935.
  • 9. Davies J. C. Bugs, biofilms, and resistance in cystic fibrosis / J. C. Davies, D. Bilton // Respir Care. – 2009. – Vol. 54. – P. 628-640.
  • 10. Doolittle M. M. Tracing the interaction of bacteriophage with bacterial biofilms using fluorescent and chromogenic probes / M. M. Doolittle, J. J. Cooney, D. E. Caldwell // J. Ind. Microbiol. – 1996. – Vol. 16. – P. 331–341.
  • 11. Garau J. Management of methicillin-resistant Staphylococcus aureus infections / J. Garau, E. Bouza, J. Chastre [et al.] // Clinical microbiology and infection. – 2009. – Vol. 15, №2. – P. 125-136.
  • 12. Gilbert P. Biofilms in vitro and in vivo: do singular mechanisms imply cross resistance? / P. Gilbert, D. G. Allison, A. J. McBain// Journal of Applied Microbiology. – 2002. – Vol. 92. – P. 98-110.
  • 13. Hall-Stoodley L. Evolving concepts in biofilm infections / L. Hall-Stoodley, P. Stoodley // Cellular Microbiology. – 2009. – Vol. 11. – P. 1034-1043.
  • 14. Izano E. A. Differential roles of Poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms / E. A. Izano, M. A. Amarante, W. B. Kher [et al.] // Applied and Environmental Microbiology. – 2008. – Vol. 74, №2. – P. 470-476.
  • 15. Jain A. Biofilm production, a marker of pathogenic potential of colonizing and commensal staphylococci / A. Jain, A. Agarwal// J. Microbiol. Methods. – 2009. – Vol. 76, №1. – P. 88–92.
  • 16. Joly-Guillou M. L. Clinical impact and pathogenicity of Acinetobacter / M. L. Joly-Guillou // Clin. Microbiol. Infect. – 2005. – Vol. 11. – P. 868–873.
  • 17. Lindberg A. A. Bacterial surface carbohydrates and bacteriophage adsorption / A. A. Lindberg // Surface Carbohydrates of the Prokaryotic Cell / ed. I. W. Sutherland. – London: Academic Press, 1977. – P. 289–356.
  • 18. Mack D. Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses / D. Mack, P. Becker, I. Chatterjeec [et. al.] // International Journal of Medical Microbiology. – 2004. – Vol. 294. – P. 203–212.
  • 19. Otto M. Staphylococcal biofilms / M. Otto // Curr. Top. Microbiol. Immunol. – 2008. – Vol. 322. – P. 207-228.
  • 20. Scholl D. Polysaccharide-degrading phages / D. School, C. Merril // Phages: Their Role in Bacterial Pathogenesis and Biotechnology / eds. M. K. Waldor, D. I. Friedman, S. L. Adhy. – Washington DC: ASM Press, 2005. – P. 400-414.
  • 21. Sutherland I. W. The interaction of phage and biofilms / I. W. Sutherland, K. A. Hughes, L. C. Skillman [et al] // FEMS Microbiology Letters. – 2004. – Vol. 232. – P. 1–6.
  • 22. Taj y. Study on biofilm-forming properties of clinical isolates of Staphylococcus aureus / y. Taj, F. Essa, F. Aziz [et. al.] // J. Infect. Dev. Ctries. – 2012. – Vol. 6, №5. – P. 403–409.
  • 23. Vergara-Irigaray M. Wall teichoic acids are dispensable for anchoring the PNAG exopolysaccharide to the Staphylococcus aureus cell surface / M. Vergara-Irigaray, T. Maira-Litran, N. Merino [et. al.] // Microbiology. – 2008. – №154, №3. – P. 865-877.

Publication of the article:

«Bulletin of problems biology and medicine» Issue 2 part 3 (109), 2014 year, 223-229 pages, index UDK 615. 371:578. 7