Stroev M. Yu., Berezka M. I., Vlasenko D. V., Karpinsky M. Yu., Yaresko A. V., Karpinska O. D.

STUDY OF THE STRESS DISTRIBUTION IN THE MODEL OF THE TIBIA WITH ITS FRACTURE IN THE LOWER THIRD WITH DIFFERENT OPTIONS OF OSTEOSYNTHESIS UNDER CONDITIONS OF INCREASING BENDING LOAD


About the author:

Stroev M. Yu., Berezka M. I., Vlasenko D. V., Karpinsky M. Yu., Yaresko A. V., Karpinska O. D.

Heading:

METHODS AND METHODOLOGIES

Type of article:

Scentific article

Annotation:

Introduction. Fractures of the bones of the tibia make up a significant part of the structure of traumatism. During the period of 2015-2018, closed tibial fractures in the Kharkiv region accounted for 19% of other traumatic injuries, in Ukraine this figure is 36%. More than 50% of complications are related to the treatment of fractures of the bones of the lower leg, which causes long-term disability. Goal. To carry out a comparative analysis of the stress-strain state of models of the tibia with its fracture in the lower third with different options of osteosynthesis under the influence of bending load depending on the patient’s weight. Materials and methods. The model simulated a tibial fracture in the lower third and three types of osteosynthesis using an external fixation device (EFD), a bone plate and an intramedullary rod. The models were tested under the influence of a bending load of 700 N and 1200 N. The results. Osteosynthesis of EFD and an intramedullary rod provide a reduction of stress values in the fracture zone below the level of indicators for an intact bone. The periosteal plate shows significantly worse indicators in the fracture zone and in the distal part of the tibia. In the proximal part, the highest stress level is determined in the model with EFD osteosynthesis. In metal structures, the greatest stresses occur in the periosteal plate. On fixing screws and rods, the highest level of stress is determined when using an intramedullary rod, the minimum – when using EFD. Conclusions. The worst stress level indicators in the fracture zone and the metal structure were determined when using a bone plate. Since these indicators are equal to the indicators of the strength limits of both tubular bones and stainless steel, early loads, in this case, can cause a fracture of the plates, and not a fusion of the fragments of the tibial bone. Osteosynthesis using EFD and an intramedullary rod ensures the lowest level of tension in the fracture zone.

Tags:

tibia,fracture,flexion,osteosynthesis

Bibliography:

  1. Hryshchenko AS, Istomin DA. Otsinka travmatyzmu v Kharkovi ta Kharkivsʹkiy oblasti za period 2015-2018 rokiv. Zbirnyk tez mizhvuzivsʹkoyi konferentsiyi molodykh vchenykh ta studentiv Medytsyna tretʹoho tysyacholittya; 2020 Sich 22; Kharkiv; 2019. s. 181-182. [in Ukrainian]. 
  2. Hayko HV, Kalashnikov AV, Boyer VA, Nikitin PV, Chychyrko OM, Chalaydyuk TP. Diafizarni perelomy v strukturi travm oporno-rukhovoyi systemy u naselennya Ukrayiny. Visnyk ortopediyi, travmatolohiyi ta protezuvannya. 2006;1:84-87. [in Ukrainian]. 
  3. Kalashnikov AV, Vdovichenko KV, Chalaydyuk TP. Efektyvnistʹ likuvannya khvorykh iz diafizarnymy perelomamy kistok nyzhnʹoyi kintsivky za dopomohoyu suchasnykh tekhnolohiy osteosyntezu. Ukrayinsʹkyy morfolohichnyy alʹmanakh. 2010;8(1):39-42. [in Ukrainian].
  4. Parratt S, Pesenti S, Argenson J-N. Obesity in orthopedics and trauma surgery. Orthopaedics & Traumatology: Surgery & Research. 2014;100(1):91-97.
  5. Bilinsʹkyy PI. Malokontaktnyy bahatoploshchynnyy osteosyntez diafizarnykh perelomiv kistok homilky. Shpytalʹna khirurhiya. Zhurnal imeni L. YA. Kovlʹchuka. 2015;3:54-58. [in Ukrainian].
  6. Lytvyshko VO, Popsuyshapka OK, Yaresʹko OV. Napruzheno-deformovanyy stan fibryn-krovyanoho z·hustku ta okistya v zoni diafizarnoho perelomu za riznykh umov zyednannya vidlamkiv ta yoho vplyv na strukturnu orhanizatsiyu reheneratu. Ortopedyya, travmatolohyya y protezyrovanye. 2016;1:62-71. [in Ukrainian].
  7. Karpynsʹkyy M, Stroyev M, Berezka M, Hryhoruk V, Yaresʹko O. Efektyvnistʹ protydiyi navantazhennyam na kruchennya riznykh variantiv osteosyntezu vidlamkiv homilky (za rezulʹtatamy matematychnoho modelyuvannya). Ortopedyya, travmatolohyya y protezyrovanye. 2022;1-2:34-42. DOI: 10.15674/0030-598720221-234-42. [in Ukrainian].
  8. Berezovskyy VA, Kolotylov NN. Byofyzycheskye kharakterystyky tkaney cheloveka. Kyyiv: Naukova dumka; 1990. 224 s.
  9. Vasyuk VL, Kovalʹ OA, Karpinsʹkyy MYU, Yaresʹko OV. Matematychne modelyuvannya variantiv osteosyntezu perelomiv dystalʹnoho metaepifiza velykohomilkovoyi kistky typu S1. Travma. 2019;20(1):37-46. DOI: 10.22141/1608-1706.1.20.2019.158666. [in Ukrainian].
  10. Korzh MO, Romanenko KK, Prozorovsʹkyy DV, Karpinsʹkyy MYU, Yaresʹko OV. Matematychne modelyuvannya vplyvu deformatsiyi kistok homilky na navantazhennya suhlobiv nyzhnʹoyi kintsivky. Travma. 2016;17(3):23-24. [in Ukrainian].
  11. Stoyko YV, Bets HV, Bets YH, Karpynskyy MYU. Analyz napryazhenno-deformyrovannoho sostoyanyya dystalʹnoho otdela holeny y stopy pry povrezhdenyyakh pilon v uslovyyakh naruzhnoy fyksatsyy pry pomoshchy sterzhnevykh apparatov. Travma. 2014;15(1):41-49. DOI: 10.22141/1608-1706.1.15.2014.81263.
  12. Gere J, Timoshenko S. Mechanics of Materials. 4th Edition. PWS; 1997. 549 p. DOI: 10.1007/978-1-4899-3124-5.
  13. Stroyev MYU, Berezka MI, Hryhoruk VV, Karpinsʹkyy MYU, Yaresʹko OV, Subbota IA. Analyz npryazhenno-deformyrovannoho sostoyanyya modely bolʹshebertsovoy kosty pry ee perelome v sredney trety s razlychnymy varyantamy osteosynteza v uslovyyakh vozrastayushchey yz·hybayushchey nahruzky. Visnyk problem biolohiyi ta medytsyny. 2022;4(167):223-236. DOI: 10.29254/2077-4214-2022-4- 167-223-236. [in Ukrainian]. 1
  14. Zenkevych OK. Metod konechnykh élementov v tekhnyke. Moskva: Myr; 1978. 519 s.
  15. Alyamovskyy AA. SolidWorks/COSMOSWorks. Ynzhenernyy analyz metodom konechnykh élementov. Moskva: DMK Press; 2004. 432 s.

Publication of the article:

«Bulletin of problems biology and medicine» Issue 1 (168), 2023 year, 280-290 pages, index UDK 616.718.5/.6-001.5-089.813:613.65]:004.492](045)

DOI: