Prykhodko O. O.

STRUCTURAL CHANGES IN THE THYMUS UNDER THE PATHOGENIC FACTORS ACTION


About the author:

Prykhodko O. O.

Heading:

LITERATURE REVIEWS

Type of article:

Scentific article

Annotation:

The thymus is the primary lymphoid organ in which antigen-independent proliferation and differentiation of T-lymphocytes occurs. After that, T-lymphocytes enter the blood and populate secondary lymphoid organs. The aim of study was to analyze and generalize data from modern scientific literature regarding structural changes in the thymus under the conditions of exposure to various exo- and endoantigens. Having followed the patterns of structural reorganization of the thymus under the influence of certain pathogens, it is possible to predict its further changes, as well as to develop methods of their prevention and correction. In general, the structure of the rat thymus is typical and close to the structure of this gland in humans. Due to which this experimental model is justified and probable, the obtained data can be extrapolated to a person. This organ is involved in maintaining homeostasis and protecting the body from foreign antigens. With age, the tissue of the thymus undergoes involutional changes, which further worsens the condition of the body and complicates the course of chronic diseases. Age-related involution leads to a progressive decrease in the formation of new T cells. This reduced output is compensated by duplication of existing T cells, but this leads to a gradual dominance of memory T cells and a reduced ability to respond to new pathogens or vaccines. Atrophy of the organ is indicated by the deterioration of the thymus microenvironment, fibrosis and adipogenesis. Thymic function is critical for reducing morbidity and mortality associated with a variety of clinical conditions, including infections and transplantation. The thymus is necessary for the development and maturation of T cells. It is extremely sensitive to atrophy, in which there is loss of thymus cellularity and disruption of its architecture. This can lead to a decrease in the yield of naive T cells. Atrophy of the thymus is often associated with aging. Therefore, the study of changes in its structural components and vascular bed under the influence of various pathological factors is an important task of morphologists and clinicians. Under the conditions of shortterm influence of any factor on the body of experimental animals, all changes in the thymus are a manifestation of a compensatory-adaptive reaction and are not specific. Under the conditions of long-term exposure, a decrease in cell density, apoptosis of lymphocytes, loss of functional capabilities of the organ is observed.

Tags:

thymus,experiment,cortical substance,brain substance,lymphocytes

Bibliography:

  1. Yerokhina VV, Avilova AV. Morfolohichni zminy pryshchytopodibnykh zaloz ta tymusa shchuriv pislia korektsii indukovanoi imunosupresii. Bukovynskyi medychnyi visnyk. 2019;23.1(89):39-46. [in Ukrainian].
  2. Aminov RF, Syrtsov VK, Fedosieieva OV, Frolov OK. Morfolohichni pokaznyky selezinky ta tymusu shchuriv pislia vplyvu solovoho ekstraktu hirudo verbana. Svit medytsyny ta biolohii. 2019;4:183-7. DOI: 26724/2079-8334-2019-4-70-183-187. [in Ukrainian].
  3. Tkachenko V. Vplyv pasyvnoho kurinnia batkiv na stan tymusa ta nadnyrkovykh zaloz yikhnikh nashchadkiv na tli mekhanichnoi rany. EJ. 2021;26(2):137-44. [in Ukrainian].
  4. Voloshin NA, Kushch OG, Aravitskiy EO. Expression and quantity dynamics of CK5+ -immunopositive thymic epithelial cells of the subcapsular zone in rats of the early postnatal period after prenatal introduction of staphylococcal anatoxin. Morphologia. 2018;12(4):24-30. DOI: 26641/1997-9665.2018. 4.24-30.
  5. Vash IYu. Morphological Changes of the Thymus of the Juvenile White Rats Exposed to the Inhalation of Formaldehyde. Journal of Anatomy and Histopathology. 2020;9(1):16-23. DOI: 18499/2225-7357-2020-9-1-16-23.
  6. Shyian D, Avilova O, Ladnaya I. Organometric changes of rats thymus after xenobiotics exposure. Arch Balk Med Union. 2019;54(3):422-
  7. DOI: https://doi.org/10.31688/ABMU.2019.54.3.04.
  8. Sawanobori Y, Ueta H, Dijkstra CD, Park CG, Satou M, Kitazawa Y, et al. Three Distinct Subsets of Thymic Epithelial Cells in Rats and Mice Defined by Novel Antibodies. PLoS ONE. 2014;9(10):e109995. DOI: https://doi.org/10.1371/journal.pone.0109995.
  9. Zimecki M, Artym J, Kocięba M, Kuryszko J, Kaleta-Kuratewicz K, Marycz K. Calf thymus extract attenuates severity of experimental encephalomyelitis in Lewis rats. Folia Neuropathologica. 2010;48(4):246-57.
  10. Majumdar S, Nandi D. Thymic Atrophy: Experimenta l Studies and Therapeutic Interventions. Scandinavian Journal of Imunology. 2017;87(1):4-14. DOI: https://doi.org/10.1111/sji.12618.
  11. Sun L, Sun C, Liang Z, Li H, Chen L, Luo H, et al. FSP1(+) fibroblast subpopulation isessential for the maintenance and regeneration of medullary thymicepithelial cells. Sci Rep. 2015;5:14871. DOI: 1038/srep14871.
  12. Kaladze NN, Zahorulko AK, Memetova YeYa. Morfogenez tkani timusa u еksperimentalnikh zhivotnikh s modelirovannim adyuvantnim artritom. Zdorovia dytyny. 2011;1(28):22.
  13. Sorokyna YV, Bocharova TV. Dinamika izmenenii v organakh imunnoі sistemi pri deistvii khronicheskogo svetovogo stressa. Eksperymentalna klinichna medytsyna. 2016;2(71):183-8.
  14. Fu L, Wanga X, Zhaia J, Qia J, Jinga L, Gea Y, et al. Changes in apoptosis, proliferation and T lymphocyte subtype on thymic cells of SPF chickens infected with reticuloendotheliosis virus. Molecular Immunology. 2019;111:87-94.
  15. Wee T, Lee AF, Nadel H, Bray H. The paediatric thymus: recognising normal and ectopic thymic tissue. Clin Radiol. 2021;76(7):477-87. DOI: 1016/j.crad.2021.02.017.
  16. Harapko TV, Holovatskyi AS. Nalbuphine-induced submicroscopic changes in the components of the thymus vascular bed. Svit medytsyny i biolohiyi. 2017;4(62):111-6. DOI: 26724/2079-8334-2017-4-62-111-116.
  17. Martinez-Ruiz GU, Morales-Sanchez A, Bhandoola A. Transcriptional and epigenetic regulation in thymic epithelial cells. Immunological Reviews. 2022;305:43-58.
  18. Anderson DR. Ultrastrueture of Normal and Leukemic Leukocytes in Human Peripheral Blood. Journal of Ultrastructure Research. 2013;9:5-42.
  19. Majumdar S, Deobagkar-Lele M, Adiga V, Raghavan А, Wadhwa N, Ahmed SM, et al. Differential suscep-tibility and maturation of thymocyte subsets duringSalmonellaTyphimurium infection: insights on the roles of glucocorticoids andInterferon-gamma. Sci Rep. 2017;7:40793.
  20. Griffith AV, Venables T, Shi J, Farr A, Remmen H, Szweda L, et al. Metabolic damage and prematurethymus aging caused by stromal catalase deficiency. Cell Rep. 2015;12:1071-9. DOI: 1016/j.celrep.2015.07.008.
  21. Grygorieva OA, Apt OA. Peculiarities of lymphocytes emigration from newborn thymus. Pathologia. 2017;14.3(41):358-63. DOI:Bhalla P, Su DM, Oers NSC. Thymus Functionality Needs More Than a Few TECs. Frontiers in Immunology. 2022;13:864777. DOI: 10.14739/2310-1237.2017.3.118765.10.3389/fimmu. 2022.864777.
  22. Wang H, Zuñiga-Pflücker JK. Thymic Microenvironment: Interactions Between Innate Immune Cells and Developing Thymocytes. Frontiers in Immunology. 2022;13:885280. DOI: 3389/fimmu.2022.885280.
  23. Yang B, Hamilton JA, Valenzuela KS. Multipotent adult progenitor cells enhance recovery after stroke by modulating the immune response from the spleen. Stem Cells. 2017;35(5):1290-302. DOI: 1002/stem.2600.
  24. Cosway EJ, White AG, Parnell SM, Schweighoffer E, Jolin HE, Bacon A, et al. Eosinophils Are An Essential Element Of A Type 2 Immune Axis That Controls Thymus Regeneration. Sci Immunol. 2022;7(69):eabn3286. DOI: 1126/sciimmunol.abn3286.
  25. Han J, Zuniga-Pflucker JC. A 2020 View of Thymus Stromal Cells in T Cell Development. J Immunol. 2021;15;206(2):249-56. DOI: 4049/ jimmunol. 2000889.
  26. Li Y, Chen P, Huang H, Feng H, Ran H, Liu W. Quantification of dendritic cell subsets in human thymus tissues of various ages. Immunity & Ageing. 2021;18:44. DOI: https://doi.org/10.1186/s12979-021-00255-8.
  27. Lins MP, Smaniotto S. Potential impact of SARS-CoV-2 infection on the thymus. Can. J. Microbiol. 2021;67:23-8. DOI: doi.org/10.1139/ cjm-2020-0170.
  28. Kellogg С, Equils O. The role of the thymus in COVID-19 disease severity: implications for antibody treatment and immunization. Human Vaccines & Immunotherapeutics. 2021;17:638-43. DOI: 1080/21645515.2020.1818 519.
  29. Wang W, Thomas R, Oh J, Su D-M. Thymic Aging May Be Associated with COVID-19 Pathophysiology in the Elderly. Cells 2021;10:628. DOI: https://doi.org/ 10.3390/cells10030628.
  30. Pietrobon AJ, Teixeira FME, Sato MN. Immunosenescence and Inflammaging: Risk Factors of Severe COVID-19 in Older People. Front. Immunol. 2020;11:579220. DOI: 3389/fimmu.2020.579220.Shichkin V, Antica M. Thymus Regeneration and Future Challenges. Stem Cell Reviews and Reports. 2020;16:239-50. DOI: https://doi. org/10.1007/ s12015-020-09955-y.
  31. Shichkin V, Antica M. Thymus Regeneration and Future Challenges. Stem Cell Reviews and Reports. 2020;16:239-50. DOI: https://doi.org/10.1007/ s12015-020-09955-y

Publication of the article:

«Bulletin of problems biology and medicine» Issue 1 (168), 2023 year, 62-72 pages, index UDK 611.438+599.23 +616.438

DOI: