Kostrikova U. A., Myakinkova L. O., Pustovoit G. L., Yarmola T. I.

VASCULAR DEPRESSION AND CARDIOVASCULAR COMPLICATIONS OF TYPE 2 DIABETES


About the author:

Kostrikova U. A., Myakinkova L. O., Pustovoit G. L., Yarmola T. I.

Heading:

LITERATURE REVIEWS

Type of article:

Scentific article

Annotation:

In recent years, the prevalence of depression in the world has increased significantly. Depression is an independent risk factor for the development of cardiovascular, cerebrovascular, and neurodegenerative diseases. Depression is widespread in vascular pathology of the brain, diabetes and coronary heart disease. The aim of the work was to generalize existing scientific data, which highlight the impact of depression on the course of type 2 diabetes, coronary heart disease and vascular endothelial dysfunction. Analysis of the bidirectional relationship between depression and macrovascular and microvascular complications of diabetes found that depression increases the risk of myocardial infarction, coronary heart disease, and congestive heart failure associated with type 2 diabetes. A distinctive feature of vascular depression determined by magnetic resonance imaging is the presence of lesions of the white matter of the brain, identified as its hyperintensity. White matter hyperintensities are particularly associated with cerebrovascular risk factors, including diabetes, heart disease, and hypertension, and are associated with cognitive impairment and depression. The development of white matter hyperintensity is facilitated by vascular dysregulation, transient ischemia, ischemic damage, and pathological processes that are accompanied by arterial hypertension. In depressive disorders, a violation of the regulation of vascular tone is expressed. Decreased cerebral blood flow can lead to impairment of its regional functions, contributing to affective and cognitive symptoms. Vascular intima growth, increased arterial stiffness, and endothelial dysfunction are changes expressed in depression. Vascular pathology leads to a decrease in the volumetric velocity of blood flow and vasomotor reactivity. Vasoactive agents released from the parenchyma of the brain can affect cells located in the vascular system, causing an appropriate vascular response. The regulatory mechanisms of the influence of glucose, nitric oxide, pro-inflammatory cytokines, arachidonic acid, eicosanoids on vascular regulation and their disturbances in patients with depression and type 2 diabetes are described. Features of astrocytic and neuronal homeostasis of the brain, neurotoxicity of disorders of carbohydrate metabolism and glutamate metabolism, their importance in the development of depression, violation of vasoactive reactions in patients with type 2 diabetes and cardiovascular risk.

Tags:

depression,diabetes,vascular endothelial regulation,cardiovascular diseases,vasoactive substances.

Bibliography:

  1. The World Health Organization. Depression [Internet]. Geneva: WHO; 2021 Sep 13 [cited 2022 Dec 01]. Available from: https://www.who. int/news-room/fact-sheets/detail/depression.
  2. Institute for Healthcare Improvement. Author in the Room: Association Between Depressive Symptoms and Diabetes [Internet]. Author in the Room Teleconference; 2008 July [cited 2022 Dec 01]. Available from: https://www. ihi.org/resources/Pages/AudioandVideo/AIRJul200 8AssociationBetweenDepressiveSymptomsandDiabetes.aspx.
  3. Winter Y, Korchounov A, Zhukova TV, Bertschі NE. Depression in elderly patients with Alzheimer dementia or vascular dementia and its influence on their quality of life. J. Neurosci Rural. Pract. 2011;2(1):27-32.
  4. Alexopoulos GS, Meyers BS, Young RC, Campbell S, Silbersweig D, Charlson M. “Vascular depression” hypothesis. Arch Gen Psychiatry. 1997;54(10):915-922.
  5. Alexopoulos GS, Meyers BS, Young RC, Kakuma T, Silbersweig D, Charlson M. Clinically defined vascular depression. Am J Psychiatry. 1997;154(4):562-565.
  6. Schneider B, Maurer K, Frolich L. Dementia and suicide. Fortschr Neurol Psychiatr. 2001 Apr;69(4):164-9.
  7. Suls J, Bunde J. Anger, anxiety, and depression as risk factors for cardiovascular disease: the problems and implications of overlapping affective dispositions. Psychol Bull [Internet]. 2005 Mar [cited 2022 Dec 01];131(2):260-300. Available from: https://pubmed.ncbi.nlm.nih. gov/ 15740422/.
  8. Nicholson A, Kuper H, Hemingway H. Depression as an aetiologic and prognostic factor in coronary heart disease: a meta-analysis of 6362 events among 146 538 participants in 54 observational studies. Eur Heart J [Internet]. 2006 Dec [cited 2022 Dec 02];27(23):2763-74. Available from: https://pubmed.ncbi.nlm.nih.gov/17082208/.
  9. van Melle JP, de Jonge P, Spijkerman TA, Tijssen JG, Ormel J, van Veldhuisen DJ, et al. Prognostic association of depression following myocardial infarction with mortality and cardiovascular events: a meta-analysis. Psychosom Med [Internet]. 2004 [cited 2022 Dec 02];66(6):814-22. Available from: https://pubmed.ncbi.nlm.nih.gov/155643 44/.
  10. Grewal K, Gravely-Witte S, Stewart DE, Grace SL. A simultaneous test of the relationship between identified psychosocial risk factors and recurrent events in coronary artery disease patients. Anxiety Stress Coping [Internet]. 2011 Jul [cited 2022 Dec 02];24(4):463-75. Available from: https://pubmed.ncbi.nlm. nih.gov/21271407/.
  11. Bai B, Yin H, Guo L, Ma H, Wang H, Liu F, et al. Comorbidity of depression and anxiety leads to a poor prognosis following angina pectoris patients: a prospective study. BMC Psychiatry [Internet]. 2021 Apr 20 [cited 2022 Dec 03];21(1):202. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC8056494/.
  12. Huang CJ, Wang SY, Lee MH, Chiu HC. Prevalence and incidence of mental illness in diabetes: a national population-based cohort study. Diabetes Res Clin Pract [Internet]. 2011 Jul [cited 2022 Dec 03];93(1):106-14. Available from: https://pubmed.ncbi.nlm.nih.gov/21514965/.
  13. Nouwen A, Adriaanse MC, van Dam K, Iversen MM, Viechtbauer W, Peyrot M, et al. Longitudinal associations between depression and diabetes complications: a systematic review and meta-analysis. Diabet Med [Internet]. 2019 Dec [cited 2022 Dec 03];36(12):1562-1572. Available from: https://pubmed.ncbi.nlm.nih.gov/31215077/.
  14. Wu CS, Hsu LY, Wang SH. Association of depression and diabetes complications and mortality: a population-based cohort study. Epidemiol Psychiatr Sci [Internet]. 2020 Jan 29 [cited 2022 Dec 03];29:e96. Available from: https://pubmed.ncbi.nlm.nih.gov/31992379/.
  15. Wang Y, Yang H, Nolan M, Burgess J, Negishi K, Marwick TH. Association of depression with evolution of heart failure in patients with type 2 diabetes mellitus. Cardiovasc Diabetol [Internet]. 2018 Jan 24 [cited 2022 Dec 04];17(1):19. Available from: https://pubmed.ncbi.nlm.nih. gov/29368650/.
  16. Liwo ANN, Howard VJ, Zhu S, Martin MY, Safford MM, Richman JS, et al. Elevated depressive symptoms and risk of all-cause and cardiovascular mortality among adults with and without diabetes: The REasons for Geographic And Racial Differences in Stroke (REGARDS) study. J Diabetes Complications [Internet]. 2020 Oct [cited 2022 Dec 04];34(10):107672. Available from: https://pubmed.ncbi. nlm.nih.gov/32684424/.
  17. Dufouil C, de Kersaint-Gilly A, Besançon V, Levy C, Auffray E, Brunnereau L, et al. Longitudinal study of blood pressure andwhite matter hyperintensities: the EVA MRI Cohort. Neurology [Internet]. 2001 Apr 10 [cited 2022 Dec 04];56(7):921-6. Available from: https://pubmed. ncbi. nlm.nih.gov/11294930/.
  18. Taylor WD, MacFall JR, Provenzale JM, Payne ME, McQuoid DR, Steffens DC, et al. Serial MR imaging of volumes of hyperintense white matter lesions in elderly patients: correlation with vascular risk factors. AJR Am J Roentgenol [Internet]. 2003 Aug [cited 2022 Dec 04];181(2):571-6. Available from: https://pubmed.ncbi.nlm.nih.gov/12876050/.
  19. Jokinen H, Kalska H, Ylikoski R, Madureira S, Verdelho A, Gouw A, et al. MRI-defined subcortical ischemic vascular disease: baseline clinical and neuropsychological findings. The LADIS Study. Cerebrovasc Dis [Internet]. 2009 Feb 14 [cited 2022 Dec 04];27(4):336-44. Available from: https://pubmed.ncbi.nlm.nih.gov/19218799/.
  20. Biessels GJ, Reijmer YD. Brain changes underlying cognitive dysfunction in diabetes: what can we learn from MRI? Diabetes [Internet].  2014 Jul [cited 2022 Dec 04];63(7):2244-52. Available from: https://pubmed.ncbi.nlm.nih. gov/24931032/.
  21. Thomas AJ, O’Brien JT, Davis S, Ballard C, Barber R, Kalaria RN, et al. Ischemic basis for deep white matter hyperintensities in major depression: a neuropathological study. Arch Gen Psychiatry [Internet]. 2002 Sep [cited 2022 Dec 04];59(9):785-92. Available from: https:// ncbi.nlm.nih. gov/12215077/.
  22. Thomas AJ, Perry R, Barber R, Kalaria RN, O’Brien JT. Pathologies and pathological mechanisms for white matter hyperintensities in depression. Ann N Y Acad Sci [Internet]. 2002 Nov [cited 2022 Dec 05];977:333-9. Available from: https://pubmed.ncbi.nlm.nih. gov/12480770/.
  23. Taylor WD, McQuoid DR, Krishnan KR. Medical comorbidity in late-life depression. Int J Geriatr Psychiatry [Internet]. 2004 Oct [cited 2022 Dec 05];19(10):935-43. Available from: https://pubmed.ncbi.nlm.nih.gov/154493 69/.
  24. Vasudev A, O’Brien JT, Tan MP, Parry SW, Thomas AJ. A study of orthostatic hypotension, heart rate variability and baroreflex sensitivity in late-life depression. J Affect Disord [Internet]. 2011 Jun [cited 2022 Dec 05];131(1-3):374-8. Available from: https://pubmed.ncbi.nlm. nih.gov/21122 918/.
  25. Puisieux F, Monaca P, Deplanque D, Delmaire C, di Pompeo C, Monaca C, et al. Relationship between leuko-araiosis and blood pressure variability in the elderly. Eur Neurol [Internet]. 2001 [cited 2022 Dec 05];46(3):115-20. Available from: https://pubmed.ncbi.nlm.nih. gov/11598328/.
  26. Markousis-Mavrogenis G, Bacopoulou F, Kolovou G, Pons MR, Giannakopoulou A, Papavasiliou A, et al. Pathophysiology of cognitive dysfunction and the role of combined brain/heart magnetic resonance imaging (Review). Exp Ther Med [Internet]. 2022 Jul 14 [cited 2022 Dec 05];24(3):569. Available from: https://pubmed.ncbi.nlm.nih.gov/35978932/.
  27. Tamura Y, Araki A. Diabetes mellitus and white matter hyperintensity. Geriatr Gerontol Int [Internet]. 2015 Dec [cited 2022 Dec 05];15(1):34-Available from: https://pubmed.ncbi.nlm.nih.gov/26671155/.
  28. Glassman AH, Bigger JT, Gaffney M, Shapiro PA, Swenson JR. Onset of major depression associated with acute coronary syndromes: relationship of onset, major depressive disorder history, and episode severity to sertraline benefit. Arch Gen Psychiatry [Internet]. 2006 Mar [cited 2022 Dec 05];63(3):283-8. Available from: https://pubmed.ncbi.nlm.nih.gov/16520 433/.
  29. Schmidt R, Schmidt H, Haybaeck J, Loitfelder M, Weis S, Cavalieri M, et al. Heterogeneity in age-related white matter changes. Acta Neuropathol [Internet]. 2011 Aug [cited 2022 Dec 05];122(2):171-85. Available from: https://pubmed.ncbi.nlm.nih.gov/21706175/.
  30. Dilger RN, Johnson RW. Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J Leukoc Biol [Internet]. 2008 Oct [cited 2022 Dec 06];84(4):932-9. Available from: https://pubmed.ncbi.nlm.nih. gov/18495785/.
  31. Maes M. Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog Neuropsychopharmacol Biol Psychiatry [Internet]. 2011 Apr 29 [cited 2022 Dec 06];35(3):664-75. Available from: https://pubmed.ncbi.nlm.nih.gov/20599581/.
  32. Raison CL, Demetrashvili M, Capuron L, Miller AH. Neuropsychiatric adverse effects of interferon-alpha: recognition and management. CNS Drugs [Internet]. 2005 [cited 2022 Dec 06];19(2):105-23. Available from: https://pubmed.ncbi.nlm.nih.gov/15697325/.
  33. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol [Internet]. 2006 Jan [cited 2022 Dec 07];27(1):24-31. Available from: https://pubmed.ncbi. nlm.nih.gov/16316783/.
  34. Kim YK, Na KS, Shin KH, Jung HY, Choi SH, Kim JB. Cytokine imbalance in the pathophysiology of major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry [Internet]. 2007 Jun 30 [cited 2022 Dec 07];31(5):1044-53. Available from: https://pubmed.ncbi. nlm.nih.gov/ 17433516/.
  35. Hannestad J, DellaGioia N, Bloch M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology [Internet]. 2011 Nov [cited 2022 Dec 07];36(12):2452-9. Available from: https://pubmed.ncbi. nlm.nih.gov/21796 103/.
  36. Conforti A, Wahlers T, Paunel-Görgülü A. Neutrophil extracellular traps modulate inflammatory markers and uptake of oxidized LDL by human and murine macrophages. PLoS One [Internet]. 2021 Nov 19 [cited 2022 Dec 07];16(11):e0259894. Available from: https://pubmed. ncbi.nlm.nih.gov/ 34797846/.
  37. Paranthaman R, Greenstein AS, Burns AS, Cruickshank JK, Heagerty AM, Jackson A, et al. Vascular function in older adults with depressive disorder. Biol Psychiatry [Internet]. 2010 Jul 15 [cited 2022 Dec 07];68(2):133-9. Available from: https://pubmed.ncbi.nlm.nih. gov/20609838/.
  38. Greenstein AS, Paranthaman R, Burns A, Jackson A, Malik RA, Baldwin RC, et al. Cerebrovascular damage in late-life depression is associated with structural and functional abnormalities of subcutaneous small arteries. Hypertension [Internet]. 2010 Oct [cited 2022 Dec 07];56(4):734-40. Available from: https://pubmed.ncbi.nlm.nih.gov/20713917/.
  39. Direk N, Koudstaal PJ, Hofman A, Ikram MA, Hoogendijk WJ, Tiemeier H. Cerebral hemodynamics and incident depression: the Rotterdam Study. Biol Psychiatry [Internet]. 2012 Aug 15 [cited 2022 Dec 07];72(4):318-23. Available from: https://pubmed.ncbi.nlm.nih.gov/22381733/.
  40. Taylor WD, Aizenstein HJ, Alexopoulos GS. The vascular depression hypothesis: mechanisms linking vascular disease with depression. Mol Psychiatry [Internet]. 2013 Sep [cited 2022 Dec 07];18(9):963-74. Available from: https://pubmed.ncbi.nlm.nih.gov/23439482/.
  41. Donnelly J, Budohoski KP, Smielewski P, Czosnyka M. Regulation of the cerebral circulation: bedside assessment and clinical implications. Crit Care [Internet]. 2016 May 5 [cited 2022 Dec 07];20(1):129. Available from: https://pubmed.ncbi.nlm.nih.gov/27145751/.
  42. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature [Internet]. 2010 Nov 11 [cited 2022 Dec 08];468(7321):232-43. Available from: https://pubmed. ncbi.nlm.nih.gov/21068832/.
  43. Jackman K, Iadecola C. Neurovascular regulation in the ischemic brain. Antioxid Redox Signal [Internet]. 2015 Jan 10 [cited 2022 Dec 08];22(2):149-60. Available from: https://pubmed.ncbi.nlm.nih.gov/24328757/.
  44. Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci [Internet]. 2017 Jul [cited 2022 Dec 08];18(7):419-34. Available from: https://pubmed.ncbi.nlm.nih.gov/28515434/.
  45. Benyó Z, Lacza Z, Hortobágyi T, Görlach C, Wahl M. Functional importance of neuronal nitric oxide synthase in the endothelium of rat basilar arteries. Brain Res [Internet]. 2000 Sep 15 [cited 2022 Dec 09];877(1):79-84. Available from: https://pubmed.ncbi.nlm.nih. gov/10980246/.
  46. Hoiland RL, Caldwell HG, Howe CA, Nowak-Flück D, Stacey BS, Bailey DM, et al. Nitric oxide is fundamental to neurovascular coupling in humans. J Physiol [Internet]. 2020 Nov [cited 2022 Dec 09];598(21):4927-4939. Available from: https://pubmed.ncbi.nlm.nih.gov/32785972/.
  47. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature [Internet]. 2014 Apr 3 [cited 2022 Dec 09];508(7494):55-60. Available from: https://pubmed.ncbi.nlm.nih.gov/24670647/.
  48. Gebremedhin D, Lange AR, Lowry TF, Taheri MR, Birks EK, Hudetz AG, et al. Production of 20-HETE and its role in autoregulation of cerebral blood flow. Circ Res [Internet]. 2000 Jul 7 [cited 2022 Dec 09];87(1):60-5. Available from: https://pubmed.ncbi.nlm.nih.gov/10884373/.
  49. Ganz MB, Seftel A. Glucose-induced changes in protein kinase C and nitric oxide are prevented by vitamin E. Am J Physiol Endocrinol Metab [Internet]. 2000 Jan [cited 2022 Dec 10];278(1):E146-52. Available from: https://pubmed.ncbi.nlm.nih.gov/10644549/.
  50. Kuboki K, Jiang ZY, Takahara N, Ha SW, Igarashi M, Yamauchi T, et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation [Internet]. 2000 Feb 15 [cited 2022 Dec 10];101(6):676-81. Available from: https://pubmed.ncbi.nlm.nih.gov/10673261/.
  51. Honing ML, Morrison PJ, Banga JD, Stroes ES, Rabelink TJ. Nitric oxide availability in diabetes mellitus. Diabetes Metab Rev [Internet]. 1998 Sep [cited 2022 Dec 10];14(3):241-9. Available from: https://pubmed.ncbi.nlm. nih.gov/9816472/.
  52. Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci [Internet]. 2014 Dec [cited 2022 Dec 10];15(12):771-85. Available from: https://pubmed.ncbi.nlm.nih.gov/2538 7473/.
  53. Bogatcheva NV, Sergeeva MG, Dudek SM, Verin AD. Arachidonic acid cascade in endothelial pathobiology. Microvasc Res [Internet]. 2005 May [cited 2022 Dec 10];69(3):107-27. Available from: https://pubmed.ncbi. nlm.nih.gov/15896353/.
  54. Spector AA, Fang X, Snyder GD, Weintraub NL. Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Prog Lipid Res [Internet]. 2004 Jan [cited 2022 Dec 11];43(1):55-90. Available from: https://pubmed. ncbi.nlm.nih.gov/14636671/.
  55. Imig JD, Hammock BD. Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discov [Internet]. 2009 Oct [cited 2022 Dec 11];8(10):794-805. Available from: https://pubmed.ncbi.nlm.nih. gov/19794443/.
  56. Mishra A, Reynolds JP, Chen Y, Gourine AV, Rusakov DA, Attwell D. Publisher Correction: Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat Neurosci [Internet]. 2020 Sep [cited 2022 Dec 11];23(9):1176. Available from: https://pubmed.ncbi.nlm.nih.gov/3266 1397/.
  57. Spector AA. Arachidonic acid cytochrome P450 epoxygenase pathway. J Lipid Res [Internet]. 2009 Apr [cited 2022 Dec 12];50():S52-6. Available from: https://pubmed.ncbi.nlm.nih.gov/18952572/.
  58. Archer SL, Gragasin FS, Wu X, Wang S, McMurtry S, Kim DH, et al. Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BK(Ca) channels. Circulation [Internet]. 2003 Feb 11 [cited 2022 Dec 12];107(5):769-76. Available from: https://pubmed.ncbi.nlm. nih.gov/12578883/.
  59. Falck JR, Reddy LM, Reddy YK, Bondlela M, Krishna UM, Ji Y, et al. 11,12-epoxyeicosatrienoic acid (11,12-EET): structural determinants for inhibition of TNF-alpha-induced VCAM-1 expression. Bioorg Med Chem Lett [Internet]. 2003 Nov 17 [cited 2022 Dec 12];13(22):4011-4. Available from: https://pubmed.ncbi.nlm.nih.gov/14592496/.
  60. Marowsky A, Burgener J, Falck JR, Fritschy JM, Arand M. Distribution of soluble and microsomal epoxide hydrolase in the mouse brain and its contribution to cerebral epoxyeicosatrienoic acid metabolism. Neuroscience [Internet]. 2009 Oct 6 [cited 2022 Dec 12];163(2):646-61. Available from: https://pubmed.ncbi.nlm.nih.gov/19540314/.
  61. Liu L, Zhang K, Sandoval H, Yamamoto S, Jaiswal M, Sanz E, et al. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell [Internet]. 2015 Jan 15 [cited 2022 Dec 12];160(1-2):177-90. Available from: https://pubmed.ncbi.nlm. nih.gov/25594180/.
  62. Spector AA, Norris AW. Action of epoxyeicosatrienoic acids on cellular function. Am J Physiol Cell Physiol [Internet]. 2007 Mar [cited 2022 Dec 13];292(3):996-1012. Available from: https://pubmed.ncbi.nlm.nih.gov/1698 7999/.
  63. Imig JD. Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases. Am J Physiol Renal Physiol [Internet]. 2005 Sep [cited 2022 Dec 13];289(3):F496-503. Available from: https://pubmed. ncbi.nlm.nih.gov/16093425/.
  64. Larsen BT, Miura H, Hatoum OA, Campbell WB, Hammock BD, Zeldin DC, et al. Epoxyeicosatrienoic and dihydroxyeicosatrienoic acids dilate human coronary arterioles via BK(Ca) channels: implications for soluble epoxide hydrolase inhibition. Am J Physiol Heart Circ Physiol [Internet]. 2006 Feb [cited 2022 Dec 13];290(2):H491-9. Available from: https://pubmed.ncbi. nlm.nih.gov/16258029/.
  65. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci [Internet]. 2014 Sep 3 [cited 2022 Dec 13];34(36):11929-47. Available from: https://pubmed.ncbi. nlm.nih.gov/25186741/.
  66. Shinto L, Lahna D, Murchison CF, Dodge H, Hagen K, David J, et al. Oxidized Products of Omega-6 and Omega-3 Long Chain Fatty Acids Are Associated with Increased White Matter Hyperintensity and Poorer Executive Function Performance in a Cohort of Cognitively Normal Hypertensive Older Adults. J Alzheimers Dis [Internet]. 2020 [cited 2022 Dec 13];74(1):65-77. Available from: https://pubmed.ncbi.nlm.nih. gov/32176647/.
  67. Borkowski K, Taha AY, Pedersen TL, De Jager PL, Bennett DA, Arnold M, et al. Serum metabolomic biomarkers of perceptual speed in cognitively normal and mildly impaired subjects with fasting state stratification. Sci Rep [Internet]. 2021 Sep 23 [cited 2022 Dec 13];11(1):18964. Available from: https://pubmed.ncbi.nlm.nih.gov/34556796/.
  68. Hennebelle M, Otoki Y, Yang J, Hammock BD, Levitt AJ, Taha AY, et al. Altered soluble epoxide hydrolase-derived oxylipins in patients with seasonal major depression: An exploratory study. Psychiatry Res [Internet]. 2017 Jun [cited 2022 Dec 13];252:94-101. Available from: https://pubmed.ncbi. nlm.nih.gov/28259037/.
  69. Borsini A, Nicolaou A, Camacho-Muñoz D, Kendall AC, Di Benedetto MG, Giacobbe J, et al. Omega-3 polyunsaturated fatty acids protect against inflammation through production of LOX and CYP450 lipid mediators: relevance for major depression and for human hippocampal neurogenesis. Mol Psychiatry [Internet]. 2021 Nov [cited 2022 Dec 13];26(11):6773-6788. Available from: https://pubmed.ncbi.nlm.nih. gov/34131267/.
  70. Anita NZ, Forkan N, Kamal R, Nguyen MM, Yu D, Major-Orfao C, et al. Serum soluble epoxide hydrolase related oxylipins and major depression in patients with type 2 diabetes. Psychoneuroendocrinology [Internet]. 2021 Apr [cited 2022 Dec 13];126:105149. Available from: https://pubmed.ncbi. nlm.nih.gov/33503568/.
  71. Nguyen MM, Perlman G, Kim N, Wu CY, Daher V, Zhou A, et al. Depression in type 2 diabetes: A systematic review and meta-analysis of blood inflammatory markers. Psychoneuroendocrinology [Internet]. 2021 Oct 13 [cited 2022 Dec 13];134:105448. Available from: https:// pubmed.ncbi. nlm.nih.gov/34687965/.
  72. Anita NZ, Swardfager W. Soluble Epoxide Hydrolase and Diabetes Complications. Int J Mol Sci [Internet]. 2022 Jun 2 [cited 2022 Dec 13];23(11):6232. Available from: https://pubmed.ncbi.nlm.nih.gov/3568 2911/.
  73. Ren Q, Ma M, Ishima T, Morisseau C, Yang J, Wagner KM, et al. Gene deficiency and pharmacological inhibition of soluble epoxide hydrolase confers resilience to repeated social defeat stress. Proc Natl Acad Sci U S A [Internet]. 2016 Mar 29 [cited 2022 Dec 13];113(13):E1944-52. Available from: https://pubmed.ncbi.nlm.nih.gov/26976569/.
  74. Qin XH, Wu Z, Dong JH, Zeng YN, Xiong WC, Liu C, et al. Liver Soluble Epoxide Hydrolase Regulates Behavioral and Cellular Effects of Chronic Stress. Cell Rep [Internet]. 2019 Dec 3 [cited 2022 Dec 13];29(10):3223-3234.e6. Available from: https://pubmed.ncbi.nlm.nih.gov/31801085/.
  75. Allen NJ, Eroglu C. Cell Biology of Astrocyte-Synapse Interactions. Neuron [Internet]. 2017 Nov 1 [cited 2022 Dec 13];96(3):697-708. Available from: https://pubmed.ncbi.nlm.nih.gov/29096081/.
  76. Torres-Platas SG, Nagy C, Wakid M, Turecki G, Mechawar N. Glial fibrillary acidic protein is differentially expressed across cortical and subcortical regions in healthy brains and downregulated in the thalamus and caudate nucleus of depressed suicides. Mol Psychiatry [Internet]. 2016 Apr [cited 2022 Dec 13];21(4):509-15. Available from: https://pubmed.ncbi.nlm.nih. gov/26033239/.
  77. Cao X, Li LP, Wang Q, Wu Q, Hu HH, Zhang M, et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med [Internet]. 2013 Jun [cited 2022 Dec 13];19(6):773-7. Available from: https://pubmed.ncbi.nlm.nih. gov/23644515/.
  78. Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacology [Internet]. 2010 Jan [cited 2022 Dec 13];35(1):192216. Available from: https://pubmed.ncbi.nlm.nih.gov/19693 001/.
  79. Ferenczi EA, Zalocusky KA, Liston C, Grosenick L, Warden MR, Amatya D, et al. Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science [Internet]. 2016 Jan 1 [cited 2022 Dec 13];351(6268):aac9698. Available from: https://pubmed.ncbi.nlm.nih.gov/ 26722001/.
  80. Popoli M, Yan Z, McEwen BS, Sanacora G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci [Internet]. 2011 Nov 30 [cited 2022 Dec 13];13(1):22-37. Available from: https://pubmed.ncbi.nlm.nih.gov/22127301/.
  81. Chung WS, Welsh CA, Barres BA, Stevens B. Do glia drive synaptic and cognitive impairment in disease? Nat Neurosci [Internet]. 2015 Nov [cited 2022 Dec 13];18(11):1539-1545. Available from: https://pubmed.ncbi. nlm.nih.gov/26505565/.
  82. Iwata M, Ota KT, Li XY, Sakaue F, Li N, Dutheil S, et al. Psychological Stress Activates the Inflammasome via Release of Adenosine Triphosphate and Stimulation of the Purinergic Type 2X7 Receptor. Biol Psychiatry [Internet]. 2016 Jul 1 [cited 2022 Dec 13];80(1):12-22. Available from: https://pubmed.ncbi.nlm.nih.gov/26831917/.
  83. Hines DJ, Schmitt LI, Hines RM, Moss SJ, Haydon PG. Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling. Transl Psychiatry [Internet]. 2013 Jan 15 [cited 2022 Dec 13];3(1):e212. Available from: https://pubmed.ncbi.nlm.nih. gov/23321809/.
  84. Xiong W, Cao X, Zeng Y, Qin X, Zhu M, Ren J, et al. Astrocytic Epoxyeicosatrienoic Acid Signaling in the Medial Prefrontal Cortex Modulates Depressive-like Behaviors. J Neurosci [Internet]. 2019 Jun 5 [cited 2022 Dec 14];39(23):4606-4623. Available from: https:// pubmed.ncbi.nlm. nih.gov/30902874/.
  85. Tomlinson DR, Gardiner NJ. Glucose neurotoxicity. Nat Rev Neurosci [Internet]. 2008 Jan [cited 2022 Dec 14];9(1):36-45. Available from: https://pubmed.ncbi.nlm.nih.gov/18094705/.
  86. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol [Internet]. 2010 Jan [cited 2022 Dec 14];119(1):7-35. Available from: https://pubmed.ncbi.nlm.nih.gov/20012068/.
  87. Wang J, Li G, Wang Z, Zhang X, Yao L, Wang F, et al. High glucose-induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes. Neuroscience [Internet]. 2012 Jan 27 [cited 2022 Dec 14];202:58-68. Available from: https://pubmed.ncbi. nlm.nih.gov/22178606/.
  88. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci [Internet]. 2006 Jan [cited 2022 Dec 14];7(1):41-53. Available from: https://pubmed.ncbi.nlm.nih.gov/16371949/.
  89. Brown AM, Ransom BR. Astrocyte glycogen and brain energy metabolism. Glia [Internet]. 2007 Sep [cited 2022 Dec 14];55(12):12631271. Available from: https://pubmed.ncbi.nlm.nih.gov/17659525/.
  90. Jakoby P, Schmidt E, Ruminot I, Gutiérrez R, Barros LF, Deitmer JW. Higher transport and metabolism of glucose in astrocytes compared with neurons: a multiphoton study of hippocampal and cerebellar tissue slices. Cereb Cortex [Internet]. 2014 Jan [cited 2022 Dec 14];24(1):222-31. Available from: https://pubmed.ncbi.nlm.nih.gov/23042735/.
  91. Bardehle S, Krüger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H, et al. Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci [Internet]. 2013 May [cited 2022 Dec 14];16(5):580-6. Available from: https://pubmed. ncbi.nlm.nih.gov/ 23542688/.
  92. Jing L, Mai L, Zhang JZ, Wang JG, Chang Y, Dong JD, et al. Diabetes inhibits cerebral ischemia-induced astrocyte activation – an observation in the cingulate cortex. Int J Biol Sci [Internet]. 2013 Sep 25 [cited 2022 Dec 14];9(9):980-8. Available from: https://pubmed.ncbi.nlm.nih.gov/24163590/.
  93. Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab [Internet]. 2011 Dec 7 [cited 2022 Dec 14];14(6):724-38. Available from: https://pubmed.ncbi. nlm.nih.gov/22152301/.
  94. Li W, Roy Choudhury G, Winters A, Prah J, Lin W, Liu R, et al. Hyperglycemia Alters Astrocyte Metabolism and Inhibits Astrocyte Proliferation. Aging Dis [Internet]. 2018 Aug 1 [cited 2022 Dec 14];9(4):674-684. Available from: https://pubmed.ncbi.nlm.nih.gov/30090655/.
  95. Hackett RA, Steptoe A. Psychosocial Factors in Diabetes and Cardiovascular Risk. Curr Cardiol Rep [Internet]. 2016 Oct [cited 2022 Dec 14];18(10):95. Available from: https://pubmed.ncbi.nlm.nih.gov/27566328/.
  96. Zhu M, Li Y, Luo B, Cui J, Liu Y, Liu Y. Comorbidity of Type 2 Diabetes Mellitus and Depression: Clinical Evidence and Rationale for the Exacerbation of Cardiovascular Disease. Front Cardiovasc Med [Internet]. 2022 Mar 10 [cited 2022 Dec 14];9:861110. Available from: https://pubmed. ncbi.nlm.nih.gov/35360021/.

Publication of the article:

«Bulletin of problems biology and medicine» Issue 1 (168), 2023 year, 17-29 pages, index UDK 616.379-008.64

DOI: