Khattou V. V

CHARACTERISTICS OF BONE DEFECT REPLACEMENT METHODS AND CONTROLLED BONE REGENERATION: A COMPARATIVE STUDY


About the author:

Khattou V. V

Heading:

LITERATURE REVIEWS

Type of article:

Scentific article

Annotation:

The analysis and generalization of a profound body of scientific literature, both in foreign and domestic publications on reparative osteogenesis research allows us to conclude that autogenous bone has the highest osteoinductive potential, but it has limited possibilities for application due to the challenging obtainment. Cancellous bone is most often used for autotransplantation because it contains osteoblasts and progenitor cells with significant osteogenic potential. They have relatively large trabecular surfaces that facilitate the creation of an osteoinductive environment by stimulating revascularization processes. On the contrary, the cortical bone does not contain osteoblasts and osteogenic cells and instead provides structural and mechanical integrity and promotes bone healing through osteoconduction. Cortical grafts integrate more slowly compared to cancellous grafts because of their limited revascularization potential. Thus, a combination of cancellous and cortical bone tissue or vascularized bone autografts is used to maximize bone remodeling performance. However, despite the beneficial properties of autologous bone tissue, its clinical application has a number of disadvantages, including the need to create an additional surgical area and the limited amount of donor material. Therefore, as an alternative to the autogenous bone, there were proposed allogeneic transplant materials which make it possible to avoid the need for additional surgical trauma, shorten the duration of the reconstructive procedure, and provide relatively accessible and inexpensive material for transplantation. Even though in some cases the use of auto- and allografts provides a noticeable clinical improvement, in order to overcome their inherent limitations (related primarily to the risk of infectious complications and immunological reactions), researchers and practitioners turn to the development of xenografts, the natural substitutes for bone tissue.

Tags:

оsteoregeneration,jaw bone defect,adentia,bone defect replacement

Bibliography:

  1. Avetikov DS, Krynychko LR, Stavytskyi SO, Lokes KP. Faktory ryzyku ta uskladnennia pry reheneratyvnykh vtruchanniakh na shchelepnykh kistkakh. Materialy nauk.-prakt. konf. z mizhnar. uchastiu Aktualni problemy stomatolohii, shchelepno-lytsevoi khirurhii, plastychnoi ta rekonstruktyvnoi khirurhii holovy ta shyi; 2019 Lyst 4-15; Poltava. Poltava: UMSA; 2019. s. 16. [in Ukrainian].
  2. Avetikov DS, Stavytskyi SO, Lokes KP, Yatsenko IV. Otsinka efektyvnosti auhmentatsii alveoliarnoho hrebnia na etapi pidhotovky do dentalnoi implantatsii. Visnyk problem biolohii i medytsyny. 2016;3.1(131):240-2. [in Ukrainian].
  3. Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8(4):114-24. DOI: https://doi.org/10.4161/org.23306.
  4. Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9(1):18. DOI: https://doi.org/10.1186/1749-799X-9-18.
  5. Misch CM. Autogenous bone: is it still the gold standard? Implant Dent. 2010;19(5):361. DOI: https://doi.org/10.1097/ID.0b013e3181f8115b.
  6. Raposo-Amaral CE, Bueno DF, Almeida AB, Jorgetti V, Costa CC, Gouveia CH, et al. Is bone transplantation the gold standard for repair of alveolar bone defects? Journal of Tissue Engineering. 2014;5:2041731413519352. DOI: https://doi.org/10.1177/2041731413519352.
  7. Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater. 2017;2(4):224-47. DOI: https://doi.org/10.1016/j.bioactmat.2017.05.007.
  8. Sittitavornwong S, Gutta R. Bone graft harvesting from regional sites. Oral Maxillofac Surg Clin North Am. 2010;22(3):317-30. DOI: https:// doi.org/10.1016/j.coms.2010.04.006.
  9. Elsalanty ME, Genecov DG. Bone grafts in craniofacial surgery. Craniomaxillofac Trauma Reconstr. 2009;2(3):125-34. DOI: https://doi. org/ 10.1055/s-0029-1215875.
  10. Verdugo F, Simonian K, D’Addona A, Pontón J, Nowzari H. Human bone repair after mandibular symphysis block harvesting: a clinical and tomographic study. J Periodontol. 2010;81(5):702-9. DOI: https://doi.org/10. 1902/jop.2010.090612.
  11. Tamai S. Experimental vascularized bone transplantations. Microsurgery. 1995;16(4):179-85. DOI: https://doi.org/10.1002/micr.1920160404.
  12. Bhatt RA, Rozental TD. Bone graft substitutes. Hand Clin. 2012;28(4):457-68. DOI: https://doi.org/10.1016/j.hcl.2012.08.001.
  13. Haugen HJ, Lyngstadaas SP, Rossi F, Perale G. Bone grafts: which is the ideal biomaterial? J Clin Periodontol. 2019;46(21):92-102. DOI: https://doi.org/10.1111/jcpe.13058.
  14. Bostrom MP, Seigerman DA. The clinical use of allografts, demineralized bone matrices, synthetic bone graft substitutes and osteoinductive growth factors: a survey study. HSS J. 2005;1(1):9-18. DOI: https://doi.org/10. 1007/s11420-005-0111-5.
  15. Malinin TI, Temple HT, Garg AK. Bone Allografts in Dentistry: A Review. Dentistry. 2014(4):199. DOI: https://doi.org/10.4172/21611122.1000199.
  16. Palmer SH, Gibbons CL, Athanasou NA. The pathology of bone allograft. J Bone Joint Surg Br. 1999;81(2):333-5. DOI: https://doi. org/10.1302/0301-620x.81b2.9320.
  17. Kao ST, Scott DD. A review of bone substitutes. Oral Maxillofac Surg Clin North Am. 2007;19(4):513-21. DOI: https://doi.org/10.1016/j. coms.2007. 06.002.
  18. Fuentes R, Issa JPM, Iyomasa MM, Oporto G, Prieto R, Borie E. The Behavior of Demineralized Bone Matrix (DBM) in Post-Extraction Sockets. Int. J. Morphol. 2012(30):394-398. DOI: http://dx.doi.org/10.4067/S0717-95022012000200005.
  19. El-Chaar ES. Demineralized bone matrix in extraction sockets: a clinical and histologic case series. Implant Dent. 2013;22(2):120-6. DOI: http://doi.org/10.1097/ID.0b013e3182859869.
  20. Hanes PJ. Bone replacement grafts for the treatment of periodontal intrabony defects. Oral Maxillofac Surg Clin North Am. 2007;19(4):499512. DOI: http://doi.org/10.1016/j.coms.2007.06.001.
  21. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005;36(3):S20-7. DOI: http://doi.org/10.1016/j. injury.2005.07.029.
  22. Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21(23):2347-59. DOI: http://doi. org/10. 1016/s0142-9612(00)00102-2.
  23. Zhang M, Powers RM Jr, Wolfinbarger L Jr. Effect(s) of the demineralization process on the osteoinductivity of demineralized bone matrix. J Periodontol. 1997;68(11):1085-92. DOI: https://doi.org/10. 1902/ jop.1997.68.11.1085.
  24. Fernandez de Grado G, Keller L, Idoux-Gillet Y, Wagner Q, Musset AM, Benkirane-Jessel N, et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng. 2018;9:2041731418776819. DOI: https:// doi.org/10.1177/20417314 18776819.
  25. Kolk A, Handschel J, Drescher W, Rothamel D, Kloss F, Blessmann M, et al. Current trends and future perspectives of bone substitute materials – from space holders to innovative biomaterials. J Craniomaxillofac Surg. 2012;40(8):706-18. DOI: https://doi.org/10.1016/j.jcms.2012.01.002.
  1. Zitzmann NU, Schärer P, Marinello CP, Schüpbach P, Berglundh T. Alveolar ridge augmentation with Bio-Oss: a histologic study in humans. Int J Periodontics Restorative Dent. 2001;21(3):288-95.
  2. Pignaton TB, Wenzel A, Ferreira CEA, Borges Martinelli C, Oliveira GJPL, Marcantonio E Jr, et al. Influence of residual bone height and sinus width on the outcome of maxillary sinus bone augmentation using anorganic bovine bone. Clin Oral Implants Res. 2019;30(4):31523. DOI: https://doi.org/ 10.1111/clr.13417.
  3. Özkan Y, Akoğlu B, Kulak-Özkan Y. Maxillary sinus floor augmentation using bovine bone grafts with simultaneous implant placement: a 5-year prospective follow-up study. Implant Dent. 2011;20(6):455-9. DOI: https://doi.org/10.1097/ID.0b013e3182386cbc.
  4. Scarano A, Degidi M, Iezzi G, Pecora G, Piattelli M, Orsini G, et al. Maxillary sinus augmentation with different biomaterials: a comparative histologic and histomorphometric study in man. Implant Dent. 2006;15(2):197-207. DOI: https://doi.org/10.1097/01.id.0000220120.54308.
  5. Uzbek UH, Rahman SA, Alam MK, Gillani SW. Bone Forming Potential of An-Organic Bovine Bone Graft: A Cone Beam CT study. J Clin Diagn Res. 2014;8(12):ZC73-6. DOI: https://doi.org/10.7860/JCDR/2014/8557.5352.
  6. Kozusko SD, Riccio C, Goulart M, Bumgardner J, Jing XL, Konofaos P. Chitosan as a Bone Scaffold Biomaterial. J Craniofac Surg. 2018;29(7):1788-93. DOI: https://doi.org/10.1097/SCS.0000000000004909.
  7. Jebahi S, Oudadesse H, Saleh, GB, Saoudi M, Mesadhi S, Rebai T, et al. Chitosan-based bioglass composite for bone tissue healing: Oxidative stress status and antiosteoporotic performance in a ovariectomized rat model. Korean J Chem Eng. 2014;31:1616-1623. DOI: https://doi.org/10.1007/ s11814-014-0072-9.
  8. Nie L, Deng Y, Li P, Hou R, Shavandi A, Yang S. Hydroxyethyl Chitosan-Reinforced Polyvinyl Alcohol/Biphasic Calcium Phosphate Hydrogels for Bone Regeneration. ACS Omega. 2020;5(19):10948-57. DOI: https://doi.org/10.1021/acsomega.0c00727.
  9. Aguilar A, Zein N, Harmouch E, Hafdi B, Bornert F, Offner D, et al. Application of Chitosan in Bone and Dental Engineering. Molecules. 2019 Aug 19;24(16):3009. DOI: https://doi.org/10.3390/molecules24163009.
  10. Husain S, Al-Samadani KH, Najeeb S, Zafar MS, Khurshid Z, Zohaib S, et al. Chitosan Biomaterials for Current and Potential Dental Applications. Materials (Basel). 2017;10(6):602. DOI: https://doi.org/10.3390/ma10060 602.
  11. Cao Y, Wang B. Biodegradation of silk biomaterials. Int J Mol Sci. 2009 Mar 31;10(4):1514-1524. DOI: https://doi.org/10.3390/ijms10041514.
  12. Kwon K-J, Seok H. Silk Protein-Based Membrane for Guided Bone Regeneration. Appl. Sci. 2018;8(8):1214. DOI: https://doi.org/10.3390/ app8081214.
  13. Khan MR, Tsukada M, Gotoh Y, Morikawa H, Freddi G, Shiozaki H. Physical properties and dyeability of silk fibers degummed with citric acid. Bioresour Technol. 2010;101(21):8439-45. DOI: https://doi.org/10.1016/j. biortech.2010.05.100.
  14. Cai Y, Guo J, Chen C, Yao C, Chung SM, Yao J, et al. Silk fibroin membrane used for guided bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2017;70(1):148-154. DOI: https://doi.org/10.1016/j.msec.2016. 08.070.
  15. Zafar MS, Al-Samadani KH. Potential use of natural silk for bio-dental applications. J Taibah Univ Med Sci. 2014;9:171-77. DOI: https:// org/ 10.1016/j.jtumed.2014.01.003.
  16. Winkler T, Sass FA, Duda GN, Schmidt-Bleek K. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res. 2018;7(3):232-43. DOI: https://doi.org/10.1302/20463758.73.BJR-2017-0270.R1.
  17. Sheikh Z, Hamdan N, Ikeda Y, Grynpas M, Ganss B, Glogauer M. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomater Res. 2017;21:9. DOI: https://doi.org/10.1186/s40824-017-0095-5.
  18. Wong RW, Rabie AB. Effect of Gusuibu graft on bone formation. J Oral Maxillofac Surg. 2006;64(5):770-7. DOI: https://doi.org/10.1016/j. joms. 2006.01.008.
  19. Sun JS, Lin CY, Dong GC, Sheu SY, Lin FH, Chen LT, et al. The effect of Gu-Sui-Bu (Drynaria fortunei J. Sm) on bone cell activities. Biomaterials. 2002;23(16):3377-85. DOI: https://doi.org/10.1016/s0142-9612(02)00038-8.
  20. McPherson RA, Vickers PG, Slater GL. Bone Grafting with Coralline Hydroxyapatite. EC Dent Sci. 2019;18(10):2413-23. Available from: https://integrant.com.au/wp-content/uploads/2020/06/McPherson-2019-Coral-Bone-Graft-Review.pdf.
  21. Giuliani A, Manescu A, Larsson E, Tromba G, Luongo G, Piattelli A, et al. In vivo regenerative properties of coralline-derived (biocoral) scaffold grafts in human maxillary defects: demonstrative and comparative study with Beta-tricalcium phosphate and biphasic calcium phosphate by synchrotron radiation x-ray microtomography. Clin Implant Dent Relat Res. 2014;16(5):736-50. DOI: https://doi.org/10.1111/ cid.12039.
  22. Yukna RA, Yukna CN. A 5-year follow-up of 16 patients treated with coralline calcium carbonate (BIOCORAL) bone replacement grafts in infrabony defects. J Clin Periodontol. 1998;25(12):1036-40. DOI: https://doi.org/10.1111/j.1600-051x.1998.tb02410.x.
  23. Titsinides S, Agrogiannis G, Karatzas T. Bone grafting materials in dentoalveolar reconstruction: A comprehensive review. Jpn Dent Sci Rev. 2019;55(1):26-32. DOI: https://doi.org/10.1016/j.jdsr.2018.09.003.
  24. Ewers R. Maxilla sinus grafting with marine algae derived bone forming material: a clinical report of long-term results. J Oral Maxillofac Surg. 2005;63(12):1712-23. DOI: https://doi.org/10.1016/j.joms.2005.08.020.
  25. Iezzi G, Degidi M, Piattelli A, Mangano C, Scarano A, Shibli JA, et al. Comparative histological results of different biomaterials used in sinus augmentation procedures: a human study at 6 months. Clin Oral Implants Res. 2012;23(12):1369-76. DOI: https://doi. org/10.1111/j.1600-0501.2011. 02308.x.
  26. Zhou AJ, Clokie CM, Peel SA. Bone formation in algae-derived and synthetic calcium phosphates with or without poloxamer. J Craniofac Surg. 2013;24(2):354-9. DOI: https://doi.org/10.1097/SCS.0b013e318267ba3f.
  27. Damien E, Revell PA. Coralline hydroxyapatite bone graft substitute: A review of experimental studies and biomedical applications. J Appl Biomater Biomech. 2004;2(2):65-73.
  28. Kumar P, Vinitha B, Fathima G. Bone grafts in dentistry. J Pharm Bioallied Sci. 2013;5(1):125-7. DOI: https://doi.org/10.4103/09757406.113312.

Publication of the article:

«Bulletin of problems biology and medicine» Issue 1 (168), 2023 year, 73-79 pages, index UDK 616.716-007-089.844+616.311.2-08:615.462]-037-021.272

DOI: