Тупотилов А. В., Коляда Т. И.

ЦИТОКИНОГЕНЕЗ ПРИ TLR-ОПОСРЕДОВАННОЙ АКТИВАЦИИ МОНОЦИТОВ ПЕРИФЕРИЧЕСКОЙ КРОВИ У БОЛЬНЫХ С РАССЕЯННЫМ СКЛЕРОЗОМ


Об авторе:

Тупотилов А. В., Коляда Т. И.

Рубрика:

КЛИНИЧЕСКАЯ И ЭКСПЕРИМЕНТАЛЬНАЯ МЕДИЦИНА

Тип статьи:

Научная статья.

Аннотация:

Исследованы различия TLR4- и TLR7/8-опосредованной активации клеток моноцитарной фракции мононуклеаров периферической крови пациентов с рецидивирующим-ремитирующим (РРС) и прогрессирующим (ПРС) рассеянным склерозом на основании анализа продукции TNF-α, IL-1β, IL-1RA, IL-6, IL-10 и IL-12p70. Установлено снижение соотношения спонтанной продукции IL-1RA и IL-1β, повышенная резервная способность к ЛПС- и ssRNA-индуцированной продукции IL-6 на фоне сниженной резервной способности к продукции TNF-α, IL-1β и IL-10 по сравнению с показателями здоровых лиц (p <0,05). При этом резервная способность моноцитов к ssRNA40/LyoVec-индуцированной продукции IL-6 и IL-10 была ниже, а IL-1RA – выше по сравнению со стимуляцией с помощью ЛПС. Периферические моноциты пациентов с рецидивирующим-ремитирующим РС характеризовались также пониженной спонтанной продукцией IL-12p70 и повышенной резервной способностью к ЛПС- и ssRNA40/LyoVec-индуцированной продукции этого цитокина. У пациентов с прогрессирующим типом заболевания наблюдался высокий уровень спонтанной продукции IL-12p70 и IL-1RA на фоне пониженной резервной способности к стимулированной продукции IL-12p70. При TLR4-стимуляции в группе ПРС было выявлено повышение уровня IL-6, снижение резервной способности к продукции IL-1RA и соотношения индуцированной продукции IL-1RA и IL-1β, а при TLR7/8-стимуляции – повышение уровня IL-1β (p<0,05). Полученные результаты указывают на различия в состоянии цитокиногенеза при стимуляции TLR4 и TLR7/8 и могут свидетельствовать о наличии функциональных и фенотипических альтераций моноцитов периферической крови в зависимости от типа течения рассеянного склероза.

Ключевые слова:

рассеянный склероз, моноциты, цитокины, Toll-подобные рецепторы

Список цитируемой литературы:

  1. Goodin DS, editor. Handbook of Clinical Neurology: Multiple Sclerosis and Related Disorders. Elsevier B.V. 2014;122:736.
  2. Mammana S, Fagone P, Cavalli E, Basile MS, Petralia MC, Nicoletti F, et al. The Role of Macrophages in Neuroinflammatory and Neurodegenerative Pathways of Alzheimer’s Disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis: Pathogenetic Cellular Effectors and Potential Therapeutic Targets. International Journal of Molecular Sciences. 2018;19(3):831. Available from: https://doi.org/10.3390/ ijms19030831 (accessed 20 July 2018)
  3. Baufeld C, O’Loughlin E, Calcagno N, Madore C, Butovsky O. Differential contribution of microglia and monocytes in neurodegenerative diseases. J. Neural. Transm. 2018;125(5):809-26. Available from: https://doi.org/10.1007/s00702-017-1795-7 (accessed 21 July 2018)
  4. Iacobaeus E, Douagi I, Jitschin R, Marcusson-Ståhl M, Andrén AT, Gavin C, et al. Phenotypic and functional alterations of myeloid derived suppressor cells during multiple sclerosis disease course. Immunology and Cell Biology. 2018. Available from: https://onlinelibrary.wiley.com/ doi/abs/10.1111/imcb.12042 (accessed 7 July 2018)
  5. Chuluundorj D, Harding SA, Abernethy D, La Flamme AC. Expansion and preferential activation of the CD14(+)CD16(+) monocyte subset during multiple sclerosis. Immunol Cell Biol. 2014;92:509-17. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1038/icb.2014.15 (accessed 15 March 2017)
  6. Boyette LB, Macedo C, Hadi K, Elinoff BD, Walters JT, Ramaswami B, et al. Phenotype, function, and differentiation potential of human monocyte subsets. PLoS ONE. 2017;12(4):e0176460. Available from: https://doi.org/10.1371/journal.pone.0176460 (accessed 22 April 2018)
  7. Wong KL, Yeap WH, Tai JJY, Ong SM, Dang TM, Wong SC. The three human monocyte subsets: implications for health and disease. Immunol. Res. 2012;53:41-57. Available from: https://doi.org/10.1007/s12026-012-8297-3 (accessed 12 May 2018)
  8. Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity. 2010;33:375–86. Available from: https://doi.org/10.1016/j.immuni.2010.08.012 (accessed 16 November 2017)
  9. Gooshe M, Abdolghaffari A, Gambuzza M, Rezaei N. The role of Toll-like receptors in multiple sclerosis and possible targeting for therapeutic purposes. Reviews in the Neurosciences. 2014;25(5):713-39. Available from: https://doi.org/10.1515/revneuro-2014-0026 (accessed 1 July 2018)
  10. Miranda-Hernandez S, Baxter AG. Role of toll-like receptors in multiple sclerosis. American journal of clinical and experimental immunology. 2013;2(1):75-93. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714200/ (accessed 3 September 2016)
  11. Deckx N, Willekens B, Wens I, Eijnde BO, Goossens H, Van Damme P, et al. Altered molecular expression of TLR-signaling pathways affects the steady-state release of IL-12p70 and IFN-a in patients with relapsing-remitting multiple sclerosis. Innate Immunity. 2016;22(4):266-273. Available from: https://doi.org/10.1177/1753425916642615 (accessed 15 August 2017)
  12. Butchi NB, Pourciau S, Du M, Morgan TW, Peterson KE. Analysis of the Neuroinflammatory Response to TLR7 Stimulation in the Brain: Comparison of Multiple TLR7 and/or TLR8 Agonists. J. Immunol. 2008;180(11):7604-12. Available from: https://doi.org/10.4049/ jimmunol.180.11.7604 (accessed 4 July 2018)
  13. Johnson TP, Tyagi R, Patel K, Schiess N, Calabresi PA, Nath A. Impaired toll-like receptor 8 signaling in multiple sclerosis. Journal of Neuroinflammation. 2013;10:74. Available from: https://doi.org/10.1186/1742-2094-10-74 (accessed 7 July 2018)
  14. Ka MB, Olive D, Mege JL. Modulation of monocyte subsets in infectious diseases. World J Immunol 2014;4(3):185-93. Available from: http:// doi.org/10.5411/wji.v4.i3.185 (accessed 12 May 2018)
  15. Kong BS, Kim Y, Kim GY, Hyun J, Kim S, Jeong A, et al. Increased frequency of IL-6-producing non-classical monocytes in neuromyelitis optica spectrum disorder. Journal of Neuroinflammation. 2017;14:191. Available from: https://doi.org/10.1186/s12974-017-0961-z (accessed 7 July 2018)
  16. Ireland SJ, Monson NL, Davis LS. Seeking Balance: Potentiation and Inhibition of Multiple Sclerosis Autoimmune Responses by IL-6 and IL-10. Cytokine. 2015;73(2):236-44. Available from: https://doi.org/10.1016/j.cyto.2015.01.009 (accessed 9 July 2018)
  17. Burger D, Molnarfi N, Weber MS, Brandt KJ, Benkhoucha M, Gruaz L, et al. Glatiramer acetate increases IL-1 receptor antagonist but decreases T cell-induced IL-1β in human monocytes and multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(11):4355-9. Available from: https://doi.org/10.1073/pnas.0812183106 (accessed 20 April 2018)
  18.  Kallaur AP, Oliveira SR, Simão ANC, Alfieri DF, Flauzino T, Lopes J, et al. Cytokine Profile in Patients with Progressive Multiple Sclerosis and Its Association with Disease Progression and Disability. Mol. Neurobiol. 2017;54(4):2950-60. Available from: https://doi.org/10.1007/s12035016-9846-x (accessed 2 April 2018)
  19. Lin C, Edelson BT. New Insights into the Role of IL-1β in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. J. Immunol. 2017;198(12):4553-60. Available from: https://doi.org/10.4049/jimmunol.1700263 (accessed 5 May 2018)
  20. Farrokhi M, Etemadifar M, Jafary Alavi MS, Zarkesh-Esfahani SH, Behjati M, Rezaei A, et al. TNF-alpha Production by Peripheral Blood Monocytes in Multiple Sclerosis Patients and Healthy Controls. Immunol Invest. 2015;44:590-601. Available from: https://doi.org/10.3109/0 8820139.2015.1059851 (accessed 14 May 2016)
  21. Fiedler SE, George JD, Love HN, Kim E, Spain R, Bourdette D, et al. Analysis of IL-6, IL-1β and TNF-α production in monocytes isolated from multiple sclerosis patients treated with disease modifying drugs. Journal of systems and integrative neuroscience. 2017;3(3). Available from: https://doi.org/10.15761/JSIN.1000166 (accessed 7 July 2018)
  22. Repnik U, Knezevic M, Jeras M. Simple and cost-effective isolation of monocytes from buffy coats. J. Immunol. Methods. 2003;278(1-2):28392. Available from: https://doi.org/10.1016/s0022-1759(03)00231-x (accessed 12 May 2018)
  23. Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B, et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J. Immunol. 2002;168:3536-42. Available from: http://www.jimmunol.org/content/168/7/3536.long (accessed 4 April 2016)
  24. Rossol M, Kraus S, Pierer M, Baerwald C, Wagner U. The CD14(bright)CD16+ monocyte subset is expanded in rheumatoid arthritis and promotes Th17 expansion. Arthritis Rheum. 2012;64:671-7. Available from: https://doi.org/10.1002/art.33418 (accessed 10 June 2016)
  25. Frisdal E, Lesnik P, Olivier M, Robillard P, Chapman MJ, Huby T, et al. Interleukin-6 protects human macrophages from cellular cholesterol accumulation and attenuates the proinflammatory response. J. Biol. Chem. 2011;286:30926-36. Available from: https://doi.org/10.1074/jbc. M111.264325 (accessed 28 August 2017)
  26. Janssens K, Slaets H, Hellings N. Immunomodulatory properties of the IL-6 cytokine family in multiple sclerosis. Ann. N. Y. Acad. Sci. 2015;1351:52-60.
  27. Fernando MR, Reyes JL, Iannuzzi J, Leung G, McKay DM. The proinflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages. PLoS One. 2014;9:e94188. Available from: https://doi.org/10.1371/journal.pone.0094188 (accessed 12 December 2017)
  28. Smedman C, Ernemar T, Gudmundsdotter L, Gille-Johnson P, Somell A, Nihlmark K, et al. FluoroSpot analysis of TLR-activated monocytes reveals several distinct cytokine secreting subpopulations. Scand. J. Immunol. 2012;75:249-58. Available from: https://doi.org/10.1111/ j.1365-3083.2011.02641.x (accessed 14 December 2017)
  29. Skrzeczynska-Moncznik J, Bzowska M, Loseke S, Grage-Griebenow E, Zembala M, Pryjma J. Peripheral blood CD14high CD16+ monocytes are main producers of IL-10. Scand. J. Immunol. 2008;67:152-9. Available from: https://doi.org/10.1111/j.1365-3083.2007.02051.x (accessed 12 December 2017)

Публикация статьи:

«Вестник проблем биологии и медицины» Выпуск 3 (145), 2018 год, 181-187 страницы, код УДК 612.017.11:616.832-004.2

DOI: