Вознесенская Т. Ю., Ступчук М. С., Калейникова О. М., Блашкив Т. В.

СИРТУИН 1 – КЛЮЧЕВОЙ КЛЕТОЧНЫЙ РЕГУЛЯТОР МЕТАБОЛИЗМА И ОКСИДАТИВНОГО СТРЕССА


Об авторе:

Вознесенская Т. Ю., Ступчук М. С., Калейникова О. М., Блашкив Т. В.

Рубрика:

ОБЗОРЫ ЛИТЕРАТУРЫ

Тип статьи:

Научная статья.

Аннотация:

Сиртуины, NAD+ -зависимые ферменты с деацетилазной и/или моно-АДФ-рыбозилтрансферазной активностью, (Sirtuins, SIRTs – silent information regulators – бесшумные регуляторы информации) связывают с процессом старения клетки. На сегодня идентифицировано семь членов семьи Sirtuin у млекопитающих (SIRT1-7), и каждый имеет специфическую внутриклеточную локализацию, функ-ции и субстратную специфичность. Исследование сиртуинов млекопитающих сосредоточены в основном на SIRT1, который является, по-жалуй, гомологом к SIRТ2 дрожжей у млекопитающих. Цель работы – сбор, анализ и обобщение данных литературы о SIRТ1 – ключевом клеточном регуляторе метаболизма и оксидативного стресса. Так, SIRT1 деацетилирует транскрипционные факторы (NF-В и FOXO), повышает активность ключевых антиоксидантных ферментов, таких как каталаза, митохондриальная СОД (MnSOD) и пероксиредоксина, регулирует экспрессию генов оксидативного стресса, в том числе глутатионпероксидазы и MnSOD; экс-прессия SIRT1 модулируется несколькими микроРНК. Таким образом, в поисках стратегий, направленных на предотвращение оксидативной угрозы женской фертильности актуальность приобретает оценка с использованием животных влияния активаторов/блока-торов активности SIRT1 на функциональное состояние яичника в условиях экспериментального иммунного системного повреждения.

Ключевые слова:

сиртуины, SIRT1, оксидативный стресс

Список цитируемой литературы:

  1. Ahn B, Kim H, Song S, Hye LI, Liu J, Vassilopoulos A, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proceeding sof the National Academy of Sciences of the United States of America.2008;105(38):14447-52.
  2. Baur J. Therapeutic potential of resveratrol: the in vivo evidence. Nature Reviews Drug Discovery.2006;5(6):493-506.
  3. Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell.2007;6(6):759-67.
  4. Braidy N, Guillemin G, Mansour H, Chan-Ling T, Poljak A, Grant R. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in Wistar rats. PLoS ONE.2011;6(4):234-43.
  5. Brunet A, Sweeney LB, Sturgill J, Chua K, Greer PL, Lin Y, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science.2004;303(5666):2011-5.
  6. Calabrese V, Cornelius C, Dinkova-Kostova A, Calabrese E, Mattson M. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxidants and Redox Signaling.2010;13(11):1763-811.
  7. Canto C. Targeting sirtuin 1 to improve metabolism: all you need is NAD+? Pharmacological Reviews.2012;64(1):166-87.
  8. ChenH, Liu X, Cao J, Zhang L, Hu X, Wang J. Role of SIRT1 and AMPK in mesenchymal stem cells differentiation. Ageing Res Rev.2014;13:55-64. 
  9. Chen Z, Shentu T, Wen L, Johnson D, Shyy J. Regulation of SIRT1 by oxidative stress-responsive miRNAs and a systematic approach to identify its role in the endo-thelium. Antioxidants and Redox Signaling.2013;19(13):1522-38.
  10. Cheng Y, Takeuchi H, Sonobe Y, Jin S, Wang Y, Horiuchi H, et al. Sirtuin 1 attenuates oxidative stress via upregulation of superoxide dismutase 2 and catalase in astrocytes. Journal of Neuroimmunology.2014;269(1-2):38-43.
  11. Coussens M, Maresh J, Yanagimachi R, Maeda G, Allsopp R. Sirt1 deficiency attenuates spermatogenesis and germ cell function. PLoS ONE.2008;3(2):334-47.
  12. Falone S, D’Alessandro A, Mirabilio A. Late-onset running biphasically improves redox balance, energy- and methyl-glyoxal-related status, as well as SIRT1 expression in mouse hippocampus. PLoS ONE 2012; 7(10):123-32.
  13. Fan H, Yang H, You L, Wang Y, He W, Hao C. The histone deacetylase, SIRT1, contributes to the resis-tance of young mice to ischemia/reperfusion-induced acute kidney injury. Kidney International.2013;83(3):404-13.
  14. Finkel T. Recent progress in the biology and physiology of sirtuins. Nature 2009;460(7255):587-91.
  15. Furukawa A, Tada-Oikawa S, Kawanishi S. H2O2accelerates cellular senescence by accumulation of acetylated p53 via decrease in the function of SIRT1 by NAD+ depletion. Cellular Physiology and Biochemistry. 2007;20(1-4):45-54.
  16. Gerhart-Hines Z, Rodgers J, Bare O, Lerin C, Kim S, Mostoslavsky R, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1. The EMBO Journal.2007;26(7):1913-23.
  17. Hasegawa K, Wakino S, Yoshioka K, Tatematsu S, Hara Y, Minakuchi H, et al. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochemical and Biophysical Research Communications.2008;372(1):51-6. 
  18. He W, Wang Y, Zhang M, You L, Davis L, Fan H, et al. Sirt1 activation protects the mouse renal medulla from oxidative injury. Journal of Clinical Investigation.2010;120(4):1056-68.
  19. Hori Y, Kuno A, Hosoda R, Tanno M, Miura T, Shimamoto K, et al. Resveratrol ameliorates muscular pathology in the dystrophic mdx mouse, a model for Duchenne muscular dystrophy. Journal of Pharmacology and Experimental Therapeutics.2011;338(3):784-94. 
  20. Hori Y, Kuno A, Hosoda R, Horio Y. Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress. PLoS ONE.2013;8(9):345-51.
  21. Howitz K, Bitterman K, Cohen H, Lamming D, Lavu S, Wood J, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature.2003;425(6954):191-6.
  22. Hubbard B, Sinclair D. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends in Pharmacological Sciences.2014;35(3):146-54.
  23. Imai S. NAD+ and sirtuins in aging and disease. Trends Cell Biol.2014;24(8):464-71. 
  24. Imai S. Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends in Pharmacological Sciences.2010;31(5):212-20.
  25. Kauppinen A, Suuronen T, Ojala J, Kaarniranta K, Salminen A. Antagonistic crosstalk between NF-B and SIRT1 in the regulation of inflammation and metabolic disorders. Cellular Signalling.2013;25(10):1939-48.
  26. Kawamura Y, Uchijima Y, Horike N, Tonami K, Nishiyama K, Amano T, et al. Sirt3 protects in vitro-fertilized mouse preimplantation embryos against oxidative stress-induced p53-mediated developmental arrest. The Journal of Clinical Investigation.2010;120(8):2817-28.
  27. Kobayashi Y, Furukawa-Hibi Y, Chen C, Horio Y, Isobe K, Ikeda K, et al. SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. International Journal of Molecular Medicine.2005;16(2):237-43.
  28. Li H, Rajendran G, Liu N, Ware C, Rubin B, Gu Y. SirT1 modulates the estrogen-insulin-like growth factor-1 signaling for postnatal development of mammary gland in mice. Breast Cancer Research.2007;9:122-34.
  29. 29. Liang H. PGC-1: a key regulator of energy metabolism. American Journal of Physiology: Advances in Physiology Education.2006;30(4):145-51.
  30. Liu M, Yin Y, Ye X, Zeng M, Zhao Q, Keefe DL, et al. Resveratrol protects against age-associated infertility in mice. Human Reproduction.2013;28(3):707-17.
  31. Ljubicic V, Burt M, Lunde J, Jasmin B. Resveratrol induces expression of the slow, oxidative phenotype in mdx mouse muscle together with enhanced activity of the SIRT1-PGC-1a axis. The American Journal of Physiology.2014;307(1):66-82.
  32. McBurney M, Yang X, Jardine K, Hixon M, Boekelheide K, Webb JR, et al. The mammalian SIR2 protein has a role in embryogenesis and gametogenesis. Molecular and Cellular Biology. 2003;23(1):38-54.
  33. Morris B. Seven sirtuins for seven deadly diseases ofaging. Free Radical Biology and Medicine.2013;56:133-71.
  34. Nemoto S. SIRT1 functionally interacts with the metabolic regulator and transcriptional coac-tivator PGC-1. Journal of Biological Chemistry.2005;280(16):16456-60.
  35. North B. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biology.2004;5(5):123-32.
  36. Pallas M, Pizarro J, Gutierrez-Cuesta J, Crespo-Biel N, Alvira D, Tajes M, et al. Modulation of SIRT1 expression in different neurodegenerative models and human pathologies. Neuroscience.2008;154(4):1388-97.
  37. Pardo P, Mohamed J, Lopez M, Boriek A. Induction of Sirt1 by mechanical stretch of skeletal muscle through the early response factor EGR1 triggers an antioxidative response. Journal of Biological Chemistry.2011;286(4):2559-66.
  38. Parihar P, Solanki I, Mansuri M, Parihar M. Mitochondrial sirtuins: emerging roles in metabolic regulations, energy homeostasis and diseases. Exp Gerontol.2015;61:130-41. 
  39. Peshti V, Obolensky A, Nahum L. Characterization of physiological defects in adult SIRT6-/- mice. PLoS One. 2017;12(4):233-45.
  40. Philp A, Chen A, Lan D, Meyer G, Murphy A, Knapp A, et al. Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise. J. Biol. Chem.2011;286(35):30561-70. 
  41. Pucci B, Villanova L, Sansone L, Pellegrini L, Tafani M, Carpi A, et al. Sirtuins: the molecular basis of beneficial effects of physical activity. Internal and Emergency Medicine.2013;8(1):23-5.
  42. Revollo J. The ways and means that fine tune Sirt1 activity. Trends in Biochemical Sciences.2013;38(3):160-7.
  43. Schmidt K, Amstad P, Cerutti P, Baeuerle P. The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-B. Chemistry and Biology.1995;2(1):13-22.
  44. Shore D. Characterization of two genes required for the position-effect control of yeast mating-type genes. The EMBO Journal.1984;3(12):817-2823.
  45. Van de Ven R. Mitochondrial Sirtuins and Molecular Mechanisms of Aging. Trends Mol. Med.2017;23(4):320-31. 
  46. Van der Horst A, Tertoolen L, de Vries-Smits L, Frye R, Medema R, Burgering B. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2SIRT1. The Journal of Biological Chemistry.2004;279(28):28873-9.
  47. Vazquez B. Sirtuins and DNA damage repair: SIRT7 comes to play. Nucleus.2017;8(2):107-15. 
  48. Verdin E. The many faces of sirtuins: coupling of NAD metabolism, sirtuins and lifespan. Nature Medicine. 2014;20(1):25-7.
  49. Watroba M, Szukiewicz D. The role of sirtuins in aging and age-related diseases. M. Adv. Med. Sci.2016;61(1):52-62. 
  50. Xu D, Takeshita F, Hino Y, Fukunaga S, Kudo Y, Tamaki A, et al. miR-22 represses cancer pro-gression by inducing cellular senescence. Journal of Cell Biology.2011;193(2):409-24.
  51. Yamakuchi M. MicroRNA regulation of SIRT1. Frontiers in Physiology.2012;3:456-62.
  52. Yamashita S, Ogawa K, Ikei T, Udono M, Fujiki T, Katakura Y. SIRT1 prevents replicative senescence of normal human umbilical cord fibroblast through potentiating the transcription of human telomerase reverse transcriptase gene. Biochemical and Biophysical Research Communications.2012;417(1):630-4.
  53. Yang Y, Liu Y, Xue J, Shi Y, Lou G, Kudo Y, et al. MicroRNA-141 Targets Sirt1 and Inhibits Autophagy to Reduce HBV Replication. Cell Physiol. Biochem.2017;41(1):310-22.
  54. Yen J, Wu P, Chen S. Fisetin Protects PC12 Cells from Tunicamycin-Mediated Cell Death via Reactive Oxygen Species Scavenging and Modulation of Nrf2-Driven Gene Expression, SIRT1 and MAPK Signaling in PC12 Cells. Int. J. Mol. Sci.2017;18(4):456-63.
  55. Yeung F, Hoberg J, Ramsey C, Keller M, Jones D, Frye R, et al. Modulation of NF-B-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO Journal.2004;23(12):2369-80.
  56. Yuan H, Zhai C, Yan X, Zhao D, Wang J, Zeng Q, et al. SIRT1 is required for long-term growth of human mesenchymal stem cells. Journal of Molecular Medicine.2012;90(4):389-400.
  57. Zhang L, Huang S, Chen Y, Wang Z, Li E, Xu Y. Icariin inhibits hydrogen peroxide-mediated cytotoxicity by up-regulating sirtuin type 1-dependent catalase and peroxire-doxin. Basic and Clinical Pharmacology and Toxicology.2010;107(5):899-905.
  58. Zhang X, Li L, Xu J, Wang N, Liu W, Lin X, et al. Rapamycin preserves the follicle pool reserve and prolongs the ovarian lifespan of female rats via modulating mTOR activation and sirtuin expression. Gene.2013;523(1):82-7.
  59. Zhong L. Fine tuning our cellular factories: sirtuins in mitochondrial biology. Cell Metabolism.2011;13(6):621-6.
  60. Zu Y, Liu L, Lee M, Xu C, Liang Y, Man R, et al. SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circulation Research.2010;106(8):1384-93.

Публикация статьи:

«Вестник проблем биологии и медицины» Выпуск 1 Том 1 (142), 2018 год, 20-25 страницы, код УДК 616.092.4

DOI: