Дроздовская С. Б., Калинский М. И.

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЕ ФАКТОРЫ, ОБУСЛАВЛИВАЮЩИЕ РАЗВИТИЕ ГИПЕРТРОФИИ СКЕЛЕТНЫХ МЫШЦ


Об авторе:

Дроздовская С. Б., Калинский М. И.

Рубрика:

ОБЗОРЫ ЛИТЕРАТУРЫ

Тип статьи:

Научная статья.

Аннотация:

Масса скелетных мышц – важный показатель здоровья и физической работоспособности человека. Занимая около 50% массы тела, скелетные мышцы играют ключевую роль не только в двигательной активности, но и поддержке метаболического статуса организма. Хотя роль наследственности и генетическая детерминированность мышечной массы доказана несколько десятилетий назад, современные научные исследования установили ряд новых генетических и эпигенетических факторов влияния на состояние мышечной массы. Цель работы – установить основные молекулярно-генетические факторы, обуславливающие развитие гипертрофии скелетных мышц. В статье описано тенденции и вызовы современных исследований в области молекулярной генетики мышечной деятельности, касающиеся генетических маркеров массы скелетных мышц. Рассматриваются особенности наследования мышечной массы и механизмы гипертрофии скелетных мышц под влиянием физических нагрузок. Анализируется роль стуктурных белков миофибрилл, миогенных регуляторных факторов на свойства и количественные показатели мышечной массы такие как общая безжировая масса тела, площадь поперечного сечения мышц. Описаны молекулярно-генетические маркеры, с которыми в широкогеномных исследованиях установлено ассоциации с показателями мышечной массы. Исследуются не только классические генетические маркеры, такие как SNP и CNV, но некодирующие РНК и эпигенетические факторы.

Ключевые слова:

гипертрофия мышц, скелетная мышечная масса, полиморфизм генов, общая безжировая масса тела, безжировая масса конечностей, молекулярно-генетические маркеры

Список цитируемой литературы:

  1. Bottinelli R, Reggiani C. Human skeletal muscle fibres: molecular and functional diversity. Prog Biophys Mol Biol [Internet]. Pergamon; 2000 Feb 1 [cited 2018 Sep 14];73(2–4):195–262.
  2. Whitham M, Febbraio MA. The ever-expanding myokinome: Discovery challenges and therapeutic implications. Nat Rev Drug Discov [Internet]. Nature Publishing Group. 2016;15(10):719–29.
  3. Trombetti A, Reid KF, Hars M. Age-associated declines in muscle mass, strength, power, and physical performance: impact on fear of falling and quality of life. Osteoporos Int. 2016;27(2):463–71.
  4. Hoppeler H. Molecular networks in skeletal muscle plasticity. J Exp Biol [Internet]. 2016;219(2):205–13.
  5. Fluck M. Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli. J Exp Biol [Internet]. 2006;209(12):2239–48.
  6. Fernandes T, Soci UPR, Melo SFS. Signaling Pathways that Mediate Skeletal Muscle Hypertrophy: Effects of Exercise Training. Skelet Muscle – From Myogenes to Clin Relations [Internet]. 2012.
  7. Sakuma K, Yamaguchi A. Molecular Mechanisms Controlling Skeletal Muscle Mass. Muscle cell tissue. 2015;484.
  8. Verbrugge SAJ, Schönfelder M, Becker L, Nezhad FY, de Angelis MH, Wackerhage H. Genes whose gain or loss-of-function increases skeletal muscle mass in mice: A systematic literature review. Front Physiol. 2018;9(MAY).
  9. Golberg ND, Druzhevskaya AM, Rogozkin VA, Ahmetov II. Role of mTOR in the regulation of skeletal muscle metabolism. Hum Physiol [Internet]. 2014;40(5):580–8.
  10. Medina-Gomez C, Kemp JP, Dimou NL, Kreiner E, Chesi A, Zemel BS, et al. Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus. Nat Commun [Internet]. Springer US;2017;8(1):1–10.
  11. Arden NK, Spector TD. Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study. J Bone Miner Res. 1997;12(12):2076–81.
  12. Livshits G, Gao F, Malkin I, Needhamsen M, Xia Y, Yuan W, et al. Contribution of Heritability and Epigenetic Factors to Skeletal Muscle Mass Variation in United Kingdom Twins. J Clin Endocrinol Metab [Internet]. Washington, DC: Endocrine Society. 2016 Jun 4;101(6):2450–9.
  13. Manuscript A. UKPMC Funders Group. Genome. 2010;24(5):238–45.
  14. Boyle EA, Li YI, Pritchard JK. An Expanded View of Complex Traits: From Polygenic to Omnigenic. Cell [Internet]. Elsevier. 2017;169(7):1177–86.
  15. MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45(D1):D896–901.
  16. Roth SM. Genetic aspects of skeletal muscle strength and mass with relevance to sarcopenia. Bonekey Rep [Internet]. Nature Publishing Group. 2012;1(APRIL):1–7.
  17. Karanikolou A, Wang G, Pitsiladis Y. Letter to the editor: A genetic-based algorithm for personalized resistance training. Biol Sport. 2017;34(1):31–3.
  18. Roca I, Fernández-Marmiesse A, Gouveia S, Segovia M, Couce ML. Prioritization of variants detected by next generation sequencing according to the mutation tolerance and mutational architecture of the corresponding genes. Int J Mol Sci. 2018;19(6).
  19. Liu XG, Tan LJ, Lei SF, Liu YJ, Shen H, Wang L, et al. Genome-wide Association and Replication Studies Identified TRHR as an Important Gene for Lean Body Mass. Am J Hum Genet [Internet]. The American Society of Human Genetics; 2009;84(3):418–23.
  20. Lunardi CC, Lima RM, Pereira RW, Leite TKM, Siqueira ABM, Oliveira RJ. Association between polymorphisms in the TRHR gene, fat-free mass, and muscle strength in older women. Age (Omaha) [Internet]. 2013;35(6):2477–83.
  21. Urano T, Shiraki M, Sasaki N, Ouchi Y, Inoue S. Large-scale analysis reveals a functional single-nucleotide polymorphism in the 5′-flanking region of PRDM16 gene associated with lean body mass. Aging Cell. 2014;13(4):739–43.
  22. Liu X, Zhao L-J, Liu Y-J, Xiong D-H, Recker RR, Deng H-W. The MTHFR gene polymorphism is associated with lean body mass but not fat body mass. Hum Genet [Internet]. 2008;123(2):189–96.
  23. Terruzzi I, Senesi P, Montesano A, Torre A La, Alberti G, Benedini S, et al. Genetic polymorphisms of the enzymes involved in DNA methylation and synthesis in elite athletes. Physiol Genomics. 2011;43:965–73.
  24. Swart KMA, Enneman AW, van Wijngaarden JP, van Dijk SC, Brouwer-Brolsma EM, Ham AC, et al. Homocysteine and the methylenetetrahydrofolate reductase 677C/T polymorphism in relation to muscle mass and strength, physical performance and postural sway. Eur J Clin Nutr [Internet]. Macmillan Publishers Limited; 2013 May 22;67:743.
  25. Hai R, Pei Y-F, Shen H, Zhang L, Liu X-G, Lin Y, et al. Genome-wide association study of copy number variation identified gremlin1 as a candidate gene for lean body mass. J Hum Genet [Internet]. The Japan Society of Human Genetics; 2011 Nov 3;57:33.
  26. Han Y, Pei Y, Liu Y, Zhang L, Wu S, Tian Q, et al. Bivariate genome-wide association study suggests fatty acid desaturase genes and cadherin <em>DCHS2</em> for variation of both compressive strength index and appendicular lean mass in males. Bone [Internet]. Elsevier; 2012 Dec 1;51(6):1000–7.
  27. Wang L, Athinarayanan S, Jiang G, Chalassani N, Zhang M, Liu W. Fatty Acid Desaturase 1 (FADS1) Gene Polymorphisms Control Human Hepatic Lipid Composition. NIH Public Access. 2016;61(1):119–28.
  28. Tintle NL, Pottala JV, Lacey S, Ramachandran V, Rogers A, Clark J, et al. A genome-wide association study of fourteen red blood cell fatty acids in the Framingham Heart Study. Prostaglandins Leukot Essent Fat Acids. 2016;94:65–72.
  29. Ran S, Liu YJ, Zhang L, Pei Y, Yang TL, Hai R, et al. Genome-wide association study identified copy number variants important for appendicular lean mass. PLoS One. 2014;9(3).
  30. Ran S, Zhang L, Liu L, Feng AP, Pei YF, Han YY, et al. Gene-based genome-wide association study identified 19p13.3 for lean body mass. Sci Rep [Internet]. Nature Publishing Group. 2017;7:1–8.
  31. Zillikens MC, Demissie S, Hsu Y-H, Yerges-Armstrong LM, Chou W-C, Stolk L, et al. Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. Nat Commun [Internet]. 2017;8(1):80.
  32. Lukk M, Kapushesky M, Nikkilä J, Parkinson H, Goncalves A, Huber W, et al. NIH Public Access. 2010;28(4):322–4.
  33. Korostishevsky M, Steves CJ, Malkin I, Spector T, Williams FMK, Livshits G. Genomics and metabolomics of muscular mass in a communitybased sample of UK females. Eur J Hum Genet [Internet]. Nature Publishing Group; 2016;24(2):277–83.
  34. DiMario JX. <em>KLF10</em> Gene Expression Modulates Fibrosis in Dystrophic Skeletal Muscle. Am J Pathol [Internet]. Elsevier; 2018 May 1;188(5):1263–75.
  35. Hidalgo C, Granzier H. Tuning the molecular giant titin through phosphorylation: Role in health and disease. Trends Cardiovasc Med. 2013;23(5):165–71.
  36. Tonino P, Kiss B, Strom J, Methawasin M, Smith JE, Kolb J, et al. The giant protein titin regulates the length of the striated muscle thick filament. Nat Commun [Internet]. Springer US. 2017;8(1):1–10.
  37. Krüger M, Kötter S. Titin, a central mediator for hypertrophic signaling, exercise-induced mechanosignaling and skeletal muscle remodeling. Front Physiol. 2016;7(MAR):1–8.
  38. Savarese M, Maggi L, Vihola A. Interpreting genetic variants in titin in patients with muscle disorders. JAMA Neurol [Internet]. 2018 May 1;75(5):557–65.
  39. Schuelke M, Wagner KR, Stolz LE, Hübner C, Riebel T, Kömen W, et al. Myostatin Mutation Associated with Gross Muscle Hypertrophy in a Child. N Engl J Med [Internet]. 2004;350(26):2682–8.
  40. Santiago C, Ruiz JR, Rodríguez-Romo G, Fiuza-Luces C, Yvert T, Gonzalez-Freire M, et al. The K153R Polymorphism in the Myostatin Gene and Muscle Power Phenotypes in Young, Non-Athletic Men. PLoS One. 2011;6(1):1–5. 
  41. Li X, Wang S-J, Tan SC, Chew PL, Liu L, Wang L, et al. The A55T and K153R polymorphisms of MSTN gene are associated with the strength training-induced muscle hypertrophy among Han Chinese men. J Sports Sci [Internet]. Routledge. 2014;32(9):883–91.
  42. Szláma G, Trexler M, Buday L, Patthy L. K153R polymorphism in myostatin gene increases the rate of promyostatin activation by furin. FEBS Lett. 2015;589(3):295–301.
  43. Haidet AM, Rizo L, Handy C, Umapathi P, Eagle A, Shilling C, et al. Long-term enhancement of skeletal muscle mass and strength by single gene administration of myostatin inhibitors. Proc Natl Acad Sci [Internet]. 2008;105(11):4318–22.
  44. Latres E, Pangilinan J, Miloscio L, Bauerlein R, Na E, Potocky TB, et al. Myostatin blockade with a fully human monoclonal antibody induces muscle hypertrophy and reverses muscle atrophy in young and aged mice. Skelet Muscle [Internet]. Skeletal Muscle. 2015;5(1):1–13.
  45. Pirruccello-Straub M, Jackson J, Wawersik S, Webster MT, Salta L, Long K, et al. Blocking extracellular activation of myostatin as a strategy for treating muscle wasting. Sci Rep [Internet]. Springer US. 2018;8(1):1–15.
  46. Hernández-Hernández JM, García-González EG, Brun CE, Rudnicki MA. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin Cell Dev Biol [Internet]. Elsevier Ltd. 2017;72:10–8.
  47. Aguiar AF, Vechetti-Júnior IJ, Alves De Souza RW, Castan EP, Milanezi-Aguiar RC, Padovani CR, et al. Myogenin, MyoD and IGF-I regulate muscle mass but not fiber-type conversion during resistance training in rats. Int J Sports Med. 2013;34(4):293–301.
  48. Schiaffino S, Dyar KA, Calabria E. Skeletal muscle mass is controlled by the MRF4–MEF2 axis. Curr Opin Clin Nutr Metab Care [Internet]. 2018;21(3).
  49. Nie M, Deng Z-L, Liu J, Wang D-Z, Nie M, Deng Z-L, et al. Noncoding RNAs, Emerging Regulators of Skeletal Muscle Development and Diseases, Noncoding RNAs, Emerging Regulators of Skeletal Muscle Development and Diseases. BioMed Res Int BioMed Res Int [Internet]. 2015;2015, 2015:e676575.
  50. Gonçalves TJM, Armand A-S. Non-coding RNAs in skeletal muscle regeneration. Non-coding RNA Res [Internet]. Elsevier Ltd. 2017;2(1):56–67.
  51. Hagan M, Zhou M, Ashraf M, Kim I, Su H, Neal L, et al. Determination. 2018;(I):1–6.
  52. Wang J, Tan J, Qi Q, Yang L, Wang Y, Zhang C, et al. MiR-487b-3p suppresses the proliferation and differentiation of myoblasts by targeting IRS1 in skeletal muscle myogenesis. Int J Biol Sci. 2018;14(7):760–74.
  53. Rooij E Van, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson A, et al. Expression and Muscle Performance. 2010;17(5):662–73.
  54. Nielsen S, Scheele C, Yfanti C, Åkerström T, Nielsen AR, Pedersen BK, et al. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J Physiol. 2010;588(20):4029–37.
  55. Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellural microRNA: a new resource of biomarkers. Mutat Res [Internet]. 2011;717(1–2):85–90.
  56. Lewis A, Lee JY, Donaldson AV, Natanek SA, Vaidyanathan S, Man WDC, et al. Increased expression of H19/miR-675 is associated with a low fat-free mass index in patients with COPD. J Cachexia Sarcopenia Muscle. 2016;(January):330–44.
  57. Ogasawara R, Akimoto T, Umeno T, Sawada S, Hamaoka T, Fujita S. MicroRNA expression profiling in skeletal muscle reveals different regulatory patterns in high and low responders to resistance training. Physiol Genomics [Internet]. 2016;48(4):320–4.
  58. Scheele C, Petrovic N, Faghihi MA, Lassmann T, Fredriksson K, Rooyackers O, et al. The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function. BMC Genomics [Internet]. 2007;8(1):74.
  59. Mousavi K, Zare H, Dell’Orso S, Grontved L, Gutierrez-Cruz G, Derfoul A, et al. ERNAs Promote Transcription by Establishing Chromatin Accessibility at Defined Genomic Loci. Mol Cell [Internet]. Elsevier Inc. 2013;51(5):606–17.
  60. Zhu M, Liu J, Xiao J, Yang L, Cai M, Shen H, et al. Lnc-mg is a long non-coding RNA that promotes myogenesis. Nat Commun. 2017;8:1–11.
  61. Zhang ZK, Li J, Guan D, Liang C, Zhuo Z, Liu J, et al. A newly identified lncRNA MAR1 acts as a miR-487b sponge to promote skeletal muscle differentiation and regeneration. J Cachexia Sarcopenia Muscle. 2018;9(3):613–26.
  62. Ferrari R, Fuchs SC, Kruel LFM, Cadore EL, Alberton CL, Pinto RS, et al. Effects of Different Concurrent Resistance and Aerobic Training Frequencies on Muscle Power and Muscle Quality in Trained Elderly Men: A Randomized Clinical Trial. Aging Dis [Internet]. 2016;7(6):697.
  63. Liberman K, Nuvagah FL, Beyer I, Bautmans I. The effects of exercise on muscle strength, body composition, physical functioning and the inflammatory profile of older adults: a systematic review. Vol. 20, Current Opinion in Clinical Nutrition and Metabolic Care. 2016. 1 p.
  64. Roberts MD, Haun CT, Mobley CB, Mumford PW, Romero MA, Roberson PA, et al. Physiological differences between low versus high skeletal muscle hypertrophic responders to resistance exercise training: Current perspectives and future research directions. Front Physiol. 2018;9(JUL):1–17.
  65. He L, Van Roie E, Bogaerts A, Morse CI, Delecluse C, Verschueren S, et al. Genetic predisposition score predicts the increases of knee strength and muscle mass after one-year exercise in healthy elderly. Exp Gerontol. Elsevier. 2018;111(July):17–26.
  66. Pickering C, Kiely J. Exercise genetics: Seeking clarity from noise. BMJ Open Sport Exerc Med. 2017;3(1).
  67. Jones N, Kiely J, Suraci B, Collins DJ, Lorenzo DD, Pickering C, et al. A genetic-based algorithm for personalized resistance training. Biol Sport. 2016;33(2):117–26.
  68. Howlett KF, McGee SL. Epigenetic regulation of skeletal muscle metabolism. Clin Sci [Internet]. 2016;130(13):1051–63.
  69. Brown WM. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: A bioinformatics metaanalysis. Br J Sports Med. 2015;49(24):1568–78.
  70. Kanzleiter T, Jähnert M, Schulze G, Selbig J, Hallahan N, Schwenk RW, et al. Exercise training alters DNA methylation patterns in genes related to muscle growth and differentiation in mice. Am J Physiol – Endocrinol Metab [Internet]. 2015;308(10):E912–20.
  71. Seaborne RA, Strauss J, Cocks M, Shepherd S, O’Brien TD, Van Someren KA, et al. Human Skeletal Muscle Possesses an Epigenetic Memory of Hypertrophy. Sci Rep. 2018;8(1):1–17. 

Публикация статьи:

«Вестник проблем биологии и медицины» Выпуск 4 Том 2 (147), 2018 год, 15-22 страницы, код УДК 796.015.6:612.1+575.113.1

DOI: