Kovalchuk S. M., Chupashko O. I

GROWTH HORMONE’S INTRACELLULAR SIGNALING: CURRENT VIEW, PHYSIOLOGICAL EFFECTS, FORWARDLOOKING ASSESSEMENT


About the author:

Kovalchuk S. M., Chupashko O. I

Heading:

LITERATURE REVIEWS

Type of article:

Scentific article

Annotation:

The growth hormone (GH), although most well known for regulating linear growth, has a great number of another important biological functions like controlling physiological processes related to the cardiovascular, hepatobiliary, renal, gastrointestinal, and reproductive systems. Despite intensive studies during the past decade, the exact molecular mechanisms of Jak activation have largely remained controversial. It is evident that much more detailed structural information regarding Jaks and the Jakcytokine-receptor complex is needed to enhance our understanding of the mechanism of Jak activation. A substantial number of key class I cytokine receptors utilize Janus kinase 2 (JAK2) for signalling. The growth hormone (GH) and erythropoietin (EPO) receptors were the first of these to be discussed, and later the prolactin, interleukins 3, 5 and 6, (GM-CSF), interferon-γ (IFNγ), thrombopoietin (TPO) and leptin receptors were found to recruit this ubiquitous tyrosine kinase. Therefore, the growth hormone activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. The spectrum of physiological processes regulated by JAK2 is therefore vast, ranging from postnatal growth, reproduction and lactation through the regulation of metabolism and body composition, bone formation. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK–STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2 , also able to trigger the mitogen-activated protein kinase (MAPK) pathways. Also, the exact mechanism and functional relevance of autophosphorylation at different sites in Jaks is not known but will be an interesting area for future research. Another important topic for future studies is to define the mechanisms of crosstalk between Jaks and other pathways. Therefore, this review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.

Tags:

growth hormone, growth hormone receptor, Janus kinase 2, insulin-like growth factor 1.

Bibliography:

  1. Moller N, Jorgensen JO. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev. 2009;30(2):152-77. DOI: 10.1210/er.2008-0027.
  2. Dehkhoda F, Lee CMM, Medina J, Brooks AJ. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Front Endocrinol (Lausanne). 2018;9:35.
  3. Milman S, Huffman DM, Barzilai N. The somatotropic axis in human aging: frame work for the current state of knowledge and future research. Cell Metab. 2016;3(6):980-9. DOI: 10.1016/j.cmet.2016.05.014.
  4. Bartke A, List EO, Kopchick JJ. The somatotropic axis and aging: benefits of endocrine defects. Growth Horm IGF Res. 2016;27:41-5. DOI: 10.1016/j.ghir.2016.02.002.
  5. Bartke A, Sun LY, Longo V. Somatotropic signaling: trade-offs between growth, reproductive development, and longevity. Physiol Rev. 2013;93(2):571-98. DOI: 10.1152/physrev.00006.2012.
  6. Dobie R, Ahmed SF, Staines KA, Pass C, Jasim S, MacRae VE, et al. Increased linear bone growth by GH in the absence of SOCS2 is independent of IGF-1. J Cell Physiol. 2015;230(11):2796-806. DOI: 10.1002/jcp.25006.
  7. Brooks AJ, Dai W, O’Mara ML, Abankwa D, Chhabra Y, Pelekanos RA, et al. Mechanism of activation of proteinkinase JAK2 by the growth hormone receptor. Science. 2014;344(6185):1249783. DOI: 10.1126/science.12497 83.
  8. Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol. 2003;3(11):900-11. DOI: 10.1038/nri1226.
  9. Waters MJ, Brooks AJ, Chhabra Y. A new mechanism for growth hormone receptor activation of JAK2, and implication for related cytokine receptors. JAK STAT. 2014;3:e29569. DOI: 10.4161/jkst.29569.
  10. Waters MJ, Brooks AJ. JAK2 activation by growth hormone and other cytokines. Biochem J. 2015;466(1):1-11. DOI: 10.1042/BJ20141293.
  11. Brooks AJ, Waters MJ. The growth hormone receptor: mechanism of activation and clinical implications. Nat Rev Endocrinol. 2010;6(9):515- 25. DOI: 10.1038/nrendo. 2010.123.
  12. Silvennoinen O, Ungureanu D, Niranjan Y, Hammaren H, Bandaranayake R, Hubbard SR. New insights into the structure and function of the pseudokinase domainin JAK2. Biochem Soc Trans. 2013;41(4):1002-7. DOI: 10.1042/BST20130005.
  13. Brooks AJ, Waters MJ. Rewriting the mechanism of JAK2 activation. Cell Cycle. 2015;14(3):285-6. DOI: 10.1080/15384101.2015.1006533.
  14. Carter-Su C, Schwartz J, Argetsinger LS. Growth hormone signaling pathways. Growth Horm IGF Res. 2016;28:11-5. DOI: 10.1016/j. ghir.2015. 09.002.
  15. Waters MJ, Brooks AJ. Growth hormone receptor: structure function relationships. Horm Res Paediatr. 2011;76(1):12-6. DOI:10.1159/000329 138.
  16. McNally R, Eck MJ. JAK-cytokine receptor recognition, unboxed. Nat Struct Mol Biol. 2014;21(5):431-3. DOI: 10.1038/nsmb.2824.
  17. Ferrao R, Wallweber HJ, Ho H, Tam C, Franke Y, Quinn J, et al. The structural basis for class II cytokine receptor recognition by JAK1. Structure. 2016;24(6):897-905. DOI: 10.1016/j.str.2016.03.023.
  18. Linossi EM, Babon JJ, Hilton DJ, Nicholson SE. Suppression of cytokine signaling: the SOCS perspective. Cytokine Growth Factor Rev. 2013;24(3):241-8. DOI: 10.1016/j.cytogfr.2013.03.005.
  19. Bohmer FD, Friedrich K. Protein tyrosinephosphatases as wardensof STAT signaling. JAK STAT. 2014;3(1):e28087. DOI: 10.4161/ jkst.28087.
  20. Gan Y, Zhang Y, Buckels A, Paterson AJ, Jiang J, Clemens TL, et al. IGF-1R modulation of acute GH-induced STAT5 signaling: role of protein tyrosine phosphatase activity. Mol Endocrinol. 2013;27(11):1969-79. DOI: 10.1210/me.2013-1178.
  21. Wu S, Yang W, DeLuca F. Insulin-like growth factor-independent effects of growth hormone on growth plate chondrogenesis and longitudinal bone growth. Endocrinol. 2015;156(7):2541-51. DOI: 10.1210/en.2014-1983.
  22. Fornari R, Marocco C, Francomano D, Fittipaldi S, Lubrano C, Bimonte VM, et al. Insulin growth factor-1 correlates with higher bone mineral density and lower inflammation status in obese adult subjects. Eat Weight Disord. 2018 Jun;23(3):375-381. DOI: 10.1007/s40519- 017-0362-4.
  23. Vitale G, Barbieri M, Kamenetskaya M, Paolisso G. GH/IGF-I/insulin system in centenarians. Mech Ageing Dev. 2016;165(B):107-14. DOI: 10.1016/j.mad.2016.12.001.
  24. Buchert M, Burns CJ, Ernst M. Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene. 2016;35(8):939- 51. DOI: 10.1038/onc.2015.150.

Publication of the article:

«Bulletin of problems biology and medicine» Issue 1 (163), 2022 year, 39-43 pages, index UDK 612.433.65

DOI: