Popko S. S., Yevtushenko V. M.

MORPHOLOGICAL CHANGES IN ALVEOLAR MACROPHAGES OF GUINEA PIGS IN THE EARLY AND LATE STAGES OF EXPERIMENTAL OVALBUMIN-INDUCED ALLERGIC INFLAMMATION


About the author:

Popko S. S., Yevtushenko V. M.

Heading:

MORPHOLOGY

Type of article:

Scentific article

Annotation:

To date, the morphological changes in alveolar macrophages of the lungs in conditions of allergic inflammation in the chronobiological aspect have not been sufficiently studied, despite the fact that they play an active role in the histophysiology of allergic inflammation. The aim of this work is to study morphological changes in alveolar macrophages of guinea pigs in the early and late stages of experimental ovalbumin-induced allergic inflammation. Material and methods. Using histological, morphometric, electron microscopic and statistical methods, the lungs of 48 male guinea pigs were studied in conditions of experimental ovalbumin-induced allergic inflammation. The ultrastructural changes in alveolar macrophages in the dynamics of the experimental allergic inflammatory process and their mean number per unit area of 10000 μm2 were determined. Results. The fact of an elevation in the functional activity of alveolar macrophages against the background of a statistically significant increase in their mean number in the early stages of the development of the allergic inflammatory process was revealed. We observed ultramicroscopic changes in alveolar macrophages, indicating the development of their functional overload in the late stages of the development of allergic inflammation. Conclusions. We demonstrated an elevation the mean number (3 times compared with the control p*/**<0.001) and functional activity of alveolar macrophages in ovalbumin-sensitized and challenged guinea pigs, confirmed at the ultramicroscopic level, in the early stages of the allergic inflammatory process. We revealed the renewal of the number of alveolar macrophages to normal parameters and the development of their functional “exhaustion” in the late stages of the allergic inflammatory process.

Tags:

alveolar macrophage, experimental allergic inflammation, ovalbumin, guinea pig.

Bibliography:

  1. Bissonnette EY, Lauzon-Joset J-F, Debley JS, Ziegler SF. Cross-Talk Between Alveolar Macrophages and Lung Epithelial Cells is Essential to Maintain Lung Homeostasis. Frontiers in Immunology. 2020;11:583042. DOI: https://doi.org/10.3389/fimmu.2020.583042.
  2. Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue-specific context. Nature Reviews Immunology. 2014;14(2):81-93. DOI: .
  3. Draijer C, Penke LRK, Peters-Golden M. Distinctive Effects of GM-CSF and M-CSF on Proliferation and Polarization of Two Major Pulmonary Macrophage Populations. The Journal of Immunology. 2019;202(9):2700-9. DOI: https://doi.org/10.4049/jimmunol.1801387
  4. Joshi N, Walter JM, Misharin AV. Alveolar Macrophages. Cellular Immunology. 2018;330:86-90. DOI: https://doi.org/10.1016/j.cellimm.2018. 01.005.
  5. Hume PS, Gibbings SL, Jakubzick CV, Tuder RM, Curran-Everett D, Henson PM, et al. Localization of Macrophages in the Human Lung via Design-based Stereology. American Journal of Respiratory and Critical Care Medicine. 2020;201(10):1209-17. DOI: https://doi. org/10.1164/rccm.201911 -2105OC.
  6. Janssen WJ, Barthel L, Muldrow A, Oberley-Deegan RE, Kearns MT, Jakubzick C, et al. Fas Determines Differential Fates of Resident and Recruited Macrophages during Resolution of Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine. 2011;184(5):547-60. DOI: https://doi.org/10.1164/rccm.201011-1891OC
  7. Epelman S, Lavine KJ, Randolph GJ. Origin and Functions of Tissue Macrophages. Immunity. 2014;41(1):21-35. DOI: https://doi. org/10.1016/j. immuni.2014.06.013.
  8. Lauzon-Joset J-F, Langlois A, Lai LJA, Santerre K, Lee-Gosselin A, Bossé Y, et al. Lung CD200 Receptor Activation Abrogates Airway Hyperresponsiveness in Experimental Asthma. American Journal of Respiratory Cell and Molecular Biology. 2015;53(2):276-84. DOI: https:// doi.org/10.1165/rcmb.2014-0229OC.
  9. Kirby AC, Coles MC, Kaye PM. Alveolar Macrophages Transport Pathogens to Lung Draining Lymph Nodes. The Journal of Immunology. 2009;183(3):1983-9. DOI: https://doi.org/10.4049/jimmunol.0901089.
  10. Lauzon-Joset J-F, Marsolais D, Langlois A, Bissonnette EY. Dysregulation of alveolar macrophages unleashes dendritic cell–mediated mechanisms of allergic airway inflammation. Mucosal Immunology. 2013;7(1):155-64. DOI: https://doi.org/10.1038/mi.2013.34
  11. Coleman MM, Ruane D, Moran B, Dunne PJ, Keane J, Mills KHG. Alveolar Macrophages Contribute to Respiratory Tolerance by Inducing FoxP3 Expression in Naive T Cells. American Journal of Respiratory Cell and Molecular Biology. 2013;48(6):773-80. DOI: https://doi. org/10.1165/rcmb. 2012-0263OC.
  12. Purnama C, Ng SL, Tetlak P, Setiagani YA, Kandasamy M, Baalasubramanian S, et al. Transient ablation of alveolar macrophages leads to massive pathology of influenza infection without affecting cellular adaptive immunity. European Journal of Immunology. 2014;44(7):2003- 12. DOI: https://doi.org/10.1002/eji.201344359.
  13. Melgert BN, ten Hacken NH, Rutgers B, Timens W, Postma DS, Hylkema MN. More alternative activation of macrophages in lungs of asthmatic patients. Journal of Allergy and Clinical Immunology. 2011;127(3):831-3. DOI: https://doi.org/10.1016/j.jaci.2010.10.045.
  14. Zaiats LM, Klishch IP. Ultrastructure of alveolar macrophages in case of experimental acute renal failure. World of Medicine and Biology. 2018;14(63):130-3. DOI: https://doi.org/10.26.724/2079-8334-2018-1-63-130-133.
  15. Nebesna ZM, Мaievskyi ОE. Submicroscopic state respiratory alveoli of the lungs in dynamic after experimental thermal injury. Rep. of Morph. [Internet]. 2017;22(1):16-9. Available from: .
  16. Nebesna ZM. Strukturna perebudova alveolyarnykh makrofagiv respiratornogo viddilu legen v dynamici pislya eksperymentalnoyi termichnoyi travmy ta v umovakh vykorystannya granulovanogo seredovyshha liofilizovanoyi ksenoshkiry. Visnyk problem biologiyi i medycyny. 2015;3(2):305-9. [in Ukrainian].
  17. Popko SS, Yevtushenko VM. Dynamika strukturnykh elementiv bronkhiv morskykh svynok pislya sensybilizaciyi ovalbuminom. Visnyk problem biologiyi i medycyny. 2021;159(1):240-4. DOI: https://doi.org/10.29254/ 2077-4214-2021-1-159-240-244. [in Ukrainian].
  18. Popko SS, Evtushenko VM, Syrtsov VK. Influence of pulmonary neuroendocrine cells on lung homeostasis. Zaporozhye Medical Journal. 2020;22(4):568-75. DOI: https://doi.org/10.14739/2310-1210.4.208411.

Publication of the article:

«Bulletin of problems biology and medicine» Issue 1 (163), 2022 year, 266-270 pages, index UDK 616-056.3-018.2-092.9:599.324.7

DOI: