Zagoruiko G. E., Zagoruyko Yu. V.

GEOMETRIC MODEL OF SPATIAL ORGANIZATION OF A COMPLEX DEVICE FOR POSTMITOTIC CARDIOMIOCYTES


About the author:

Zagoruiko G. E., Zagoruyko Yu. V.

Heading:

DISCUSSIONS

Type of article:

Scentific article

Annotation:

Due to the absence of clearly defined boundaries between MFs on the transverse sections of CMC, we believe that the term “myofibril” is not applicable for characterizing the structural organization of the contractile apparatus (CA) of CMC. The geometric model of CA CMC is a complex of sequentially located disks, which consist of a set of filaments of actin and myosin. The diameter of the disk corresponds to the diameter of the CMC section, and the width to the distance between the telophragms. Disks are disposed across the longitudinal axis of the CMC, closely adjacent to each other and connected to each other by telophragms. The disk is a morphofunctional unit of CA CMC. For its name, we suggest using the term “sarcosome”. The CMC sarcosome model is a low cylinder whose base diameter is equal to the diameter of the CMC cross section (d, μm), and the height is to the length of the sarcomere l, μm (the distance between the two Z lines). SA sarcosomes are permeated with a variety of cavities in shape and size, inside of which circulates sarcoplasm, the core, organelles and inclusions are localized. Depending on the location, shape and size of the cavities, sarcosomes are divided into three types. Transverse. They are in contact with the VD (CMC boundaries) and have practically no cavities. Central, contain the largest in size cavity in which the core, synthetic apparatus, a set of rounded shape Mx and inclusions are located. Intermediate. In the longitudinal cavities of these sarcosomes are the chains of mitochondria of elongated form and numerous inclusions.

Tags:

cardiomocyte, contractile apparatus (CA) CMC, sarcosome, geometric model of CA CMC

Bibliography:

  • Bykov VL. Tsitologiya i obshchaya gistologiya (funktsionalnaya morfologiya kletok i tkaney cheloveka). SPb.: SOTIS; 1999. 520 s. [in Russiаn]. 
  • Rukovodstvo po gistologii. SPb.: SpetsLit; 2001. 495 s. [in Russian].
  • Marchenko DG. Tverdokhlíb ÍV. Ontogenetichní mekhanízmi formuvannya skorotlivogo aparata kardíomíotsitív. Morfologíya. 2012;6(4):5-11. [in Ukrainian].
  • Shevchenko KM. Morfologíchní zmíni skorotlivogo aparata kardíomíotsitív peredserd shchurív v normí ta za umov vplivu gostroí khroníchnoí prenatalnoí gípoksíí. Rol a-gladkomyazovogo aktinu u míofíbrilogenezí. Morfologíya. 2016;10(2):85-92. [in Ukrainian].
  • Volkov KS, Pasêchko NV. Ul’trastruktura klítin í tkanin (navchalniy posíbnik). Ternopíl: Ukrmedkniga; 1997. 96 s. [in Ukrainian].
  • Nepomnyashchikh LM, Lushnikova YeL, Nepomnyashchikh GI. Morfometriya i stereologiya gipertrofii serdtsa. Novosibirsk: Nauka; 1986. 304 s. [in Russian]. 
  • Nepomnyashchikh LM. Patologicheskaya anatomiya i ultrastruktura serdtsa (Kompleksnoye morfologicheskoye issledovaniye obshchepatologicheskogo protsessa v miokarde). Novosibirsk: Nauka; 1981. 324 s. [in Russian]. 
  • Arefyev VA, Lisovenko LA. Anglo-russkiy slovar geneticheskikh terminov. M.: VNIRO; 1995. 407 s. [in Russian]. 
  • Matantsev AN, Matantseva SG. Griby. Spravochnik-opredelitel. M.: Feniks; 2014. 248 s. [in Russian]. 
  • Mashtalir MA, Moroz NA, Pototskaya OYu, Shapoval YeA. Rannyaya trabekulyatsiya zheludochkovogo otdela embrionalnogo serdtsa. Mat. 11 Vseukr. nauch. morf. konf. Karpovskí chitannya. Dnípropetrovsk: Porogi; 2005. s. 43-5. [in Russian].
  • Zagoruyko GYe, Zagoruyko YuV. Morfometricheskiy analiz prenatalnogo i postnatalnogo sozrevaniya kardiomiotsitov krys. Vísnik. probl. bíol. í meditsini. 2017;2(136):290-4. [in Russian].
  • Plachenov TG, Kolosentsev SD. Porometriya. L.: Khimiya; 1988. 176 s. [in Russian].

Publication of the article:

«Bulletin of problems biology and medicine» Issue 1 Part 2 (143), 2018 year, 9-11 pages, index UDK 611.12:611.018:611.01

DOI: