Starchenko T. G., Koval S. N., Yushko K. A., Shkapo V. L., Miloslavsky D. K.

FORMATION OF HEART RHYTHM DISTURBANCES IN PATIENTS WITH ESSENTIAL HYPERTENSION AND TYPE 2 DIABETES MELLITUS


About the author:

Starchenko T. G., Koval S. N., Yushko K. A., Shkapo V. L., Miloslavsky D. K.

Heading:

LITERATURE REVIEWS

Type of article:

Scentific article

Annotation:

It is known that the combination of essential hypertension (EH) and type 2 diabetes (T2D) increases the incidence of heart rhythm disturbances, which includes atrial fibrillation (AF), ventricular extrasystoles of high gradation, ventricular tachycardia, ventricular fibrillation, intraventricular and intraarticular conduction, sinus tachycardia, supraventricular extrasystole, bradycardia. It is known that increased blood pressure is associated with an increased risk of arrhythmias. The study of mechanisms of cardiac rhythm disturbances formation in patients with EH with T2D showed the value of specific carbohydrate and lipid metabolism disorders, as well as the contribution of abdominal obesity. It is considered that proinflammatory adipocytokines of epicardial fat act as factors of trigger activity, which is confirmed by the expediency of reducing body weight in the treatment of AF. Published data indicate that changes in the processes of repolarization and depolarization of the myocardium are contributed in significant violation of the electrophysiological properties of the myocardium in patients with carbohydrate metabolism disorders. The pathogenetic factors of AF development in patients with EH with T2D include the activation of the complex of end-product glycation against the background of chronic hyperglycemia associated with receptors, which leads to the expression of the synthesis of connective tissue growth factors and contributes to the development of diffuse interstitial fibrosis and atrial remodeling. The role of some growth factors with the profibrogenic mechanisms in the development of arrhythmias is discussed. Thus, the activation of TGF β1 receptor accelerates the synthesis of connective tissue growth factor that is released locally and greatly stimulates the synthesis of extracellular matrix proteins and accelerates the development of fibrosis. The role of miRNA 34a in the development of myocardial fibrosis is shown, which also indicates its involvement in the formation of arrhythmogenic potential. It is considered that heart rhythm disturbances in patients with EH and T2D can be due with diabetic cardiopathy and diabetic autonomic neuropathy, the diagnosis of which in some cases is difficult due to the mosaic clinical picture. It has been established that supraventricular heart rhythm disturbances predominate in patients with EH with T2D, in contrast to patients with EH without T2D. At the same time, the presence of ventricular arrhythmias occurs at the same frequency in patients with EH with and without T2D, which contributes to the development of pathological remodeling of the left ventricle of the heart. It should be noted separately, that patients with EH with T2D have high frequency of asymptomatic heart rhythm disturbances, which indicates the expediency of including of the daily profile of ECG in the clinical study of such patients for the timely detection of arrhythmias and adequate antiarrhythmic treatment.

Tags:

heart rhythm disturbances, essential hypertension, type 2 diabetes mellitus

Bibliography:

  1. Standards of Medical Care in Diabetes 2018. Diabetes Care 2018 Jan; 41 (Supplement 1):S1-S2. Available from: https://doi.org/10.2337/ dc18-Sint01
  2. Erickson JR, Pereira L, Wang L, Han G, Ferguson A, Dao K, et al. Diabetic Hyperglycemia activates CaMKII and Arrhythmias by O linked Glycosylation. Nature. 2013;502(7471):372-6.
  3. Maslyayeva LV, Starchenko TG. Narusheniye ritma i provodimosti serdtsa u bol’nykh s gipertonicheskoy bolezn’yu i soputstvuyushchim sakharnym diabetom 2 tipa. Materialy pervogo vserossiyskogo s”yezda aritmologov. M.: 2005. s. 72-7. [in Russiаn].
  4. Shurygina VD, Shubik YuV. Narusheniya ritma serdtsa pri MS. Vestnik aritmologii. 2009;3:56-63. [in Russiаn].
  5. Ametov AS, Chernikova NA, Yermakova YeA. Sakharnyy diabet i arterial’naya gipertenziya. Meditsinskiy sovet. Kardiologiya. 2015;12:12-7. [in Russiаn].
  6. Nemtsova VD. Sakharnyy diabet i vnezapnaya smert: reshennyye i nereshennyye voprosy. Svít bíologíí̈ í meditsini. 2015;2(50):206-11. [in Russiаn].
  7. Menezes AR, Lavie CJ, DiNicolantonio JJ, O’Keefe J, Morin DP, Khatib S, et al. Atrial fibrillation in the 21st century: a current understanding of risk factors and primary prevention strategies. Mayo Clin Proc. 2013;88(4):394-409.
  8. Kanel WB, Benjamin EJ. Status of epidemiology of atrial fibrillation. Med. Clin. North. Am. 2008;92(1):17-40.
  9. Skyler JS, Bergenstal R, Bonow RO, Buse J, Deedwania P, Gale EAM, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of 165 the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Diabetes Care. 2008;32(1):187-92.
  10. Auer J. Fat: an emerging player in the field of atrial fibrillation. European Heart Journal. 2017;38:62-5.
  11. Haemers P, Hamdi H, Guedj K, Suffee N, Farahmand P, Popovic N, et al. Atrial fibrillation is associated with the fibrotic remodelling of adipose tissue in the subepicardium of human and sheep atria. Eur Heart J. 2017;38:53-61.
  12. Maan A, Mansour M, Ruskin JN, Heist EK. Role of Epicardial Fat in Atrial Fibrillation Pathophysiology and Clinical Implications. The Journal of Innovations in Cardiac Rhythm Management. 2013;4:1077-82.
  13. Abed HS, Wittert GA, Leong DP, Shirazi MG, Bahrami B, Middeldorp ME, et al. Effect of weight reduction and cardiometabolic risk factor management on symptom burden and severity in patients with atrial fibrillation: a randomized clinical trial. JAMA. 2013;310(19):2050-60.
  14. Pathak RK, Middeldorp ME, Meredith M, Mehta AB, Mahaian R, Wong CX, et al. Longterm effect of goal directed weight management in an atrial fibrillation cohort: a long-term follow-up StudY (LEGACY Study). J Am Coll Cardiol. 2015;65(20):2159-69.
  15. Iacobellis G. Epicardial fat: a new cardiovascular therapeutic target. Curr Opin Pharmacol. 2016;27:13-8.
  16. Bratus’ VV, Talayeva TV, Shumakov VA. Ozhireniye, insulinorezistentnost’, metabolicheskiy sindrom: fundamental’nyye i klinicheskiye issledovaniya. K.: Chetverta khvilya; 2009. 416 s. [in Russiаn].
  17. Kolesnikova YeV. Vliyaniye nealkogol’noy zhirovoy bolezni na razvitiye karotidnogo ateroskleroza. Zaporozh. Med. Zhurnal. 2011;13(4):110-3. [in Russiаn].
  18. Doroshchuk NA, Lankin VZ, Tikhaze AK, Odinokova OA, Konovalova GG, Postnov AYu. Okislitel’nyy stress i ukorocheniye telomerov v leykotsitakh krovi bol’nykh s vpervyye vyyavlennym sakharnym diabetom 2 tipa. Kardiologicheskiy vestnik. 2016;2:56-62. [in Russiаn].
  19. Gimayev RKh, Ruzov VI, Razin VA. Narusheniye elektrofiziologicheskikh svoystv miokarda u bol’nykh arterial’noy gipertoniyey i sakharnym diabetom 2-go tipa. Klinicheskaya meditsina. 2012;2:35-41. [in Russiаn].
  20. Movahed MR, Hashemzadeh M, Jamal MM. Diabetes mellitus is a strong, independent risk for atrial fibrillation and flutter in addition toother cardiovascular disease. Int J Cardiol. 2005 Dec 7;105(3):315-8.
  21. Drapkina OM, Gegenava BB. Fibroz miokarda u bol’nykh sakharnym diabetom. Ratsional’naya farmakoterapiya v kardiologii. 2013;9(1):85-93. [in Russiаn].
  22. Grigoriadi NE, Vasilets LM, Ratanova YeA, Karpunina NS, Tuyev AV. Izmeneniye syvorotochnogo markera kardial’nogo fibroza i vospaleniya pri fibrillyatsii predserdiy. Klinicheskaya meditsina. 2013;10:34-7. [in Russiаn].
  23. Reno CM, Daphna-Iken D, Chen YS, VanderWeele J, Jethi K, Fisher SJ. Severe hypoglycemia-induced lethal cardiac arrhythmias are mediated by sympathoadrenal activation. Diabetes. 2013;62(10):3570-81.
  24. Chow E, Bernjak A, Williams S, Fawdry RA, Hibbert S, Freeman J, et al. Risk of cardiac arrhythmias during hypoglycemia in patients with type 2 diabetes and cardiovascular risk. Diabetes. 2014;63(5):1738-47.
  25. Kaliskб G. Diabetes mellitus a arytmie. Forum Diab. 2015;4(1):414.
  26. Plinokosova LA, Klester YeB, Lychev VG, Ivanov OA, Klester KV. Prognosticheskaya otsenka narusheniya ritma pri sochetanii khronicheskoy serdechnoy nedostatochnosti i sakharnogo diabeta 2 tipa (po rezul’tatam sutochnogo monitorirovaniya EKG). Fundamental’nyye issledovaniya. 2013;9(6):1106-9. [in Russiаn].
  27. Nakajima H, Nakajima HO, Salcher O, Dittie AS, Dembowsky K, Jing S, et al. Atrial but not ventricular fibrosis in mice expressing a mutant transforming growth factor-β1 transgene in the heart. Circulation research. 2018;86(5):571-9.
  28. Li X, Ma C, Dong J, Liu X, Long D, Tian Y, et al. The fibrosis and atrial fibrillation: is the transforming growth factor-beta 1 a candidate etiology of atrial fibrillation. Medical hypotheses. 2008;70(2):317-9.
  29. Ma I, Ionin VA, Zaslavskaya YeL, Ulitina AS, Panteleyeva AA, Belyayeva OD, i dr. Polimorfnyye varianty g/c+915 transformiruyushchego faktora rosta beta 1 i fibrillyatsiya predserdiy u patsiyentov s metabolicheskim sindromom. Arterial’naya gipertenziya. 2018;24(1):93-100. [in Russiаn].
  30. Boon RA, Iekushi K, Lechner S, Seeger T, Fischer A, Heydt S, et al. MicroRNA-34a regulates cardiac ageing and function. Nature. 2013;495(7439):107-10.
  31. Huang Y, Qi Y, Du JQ, Zhang DF. MicroRNA-34a regulates cardiac fibrosis after myocardial infarction by targeting Smad4. Exp Opin Ther Targets 2014;18(12):1355-65.
  32. Cardin S, Guasch E, Luo X, Naud P, Le Quang K, Shi Y, et al. Role for microRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure. Circ Arrhythm J Electrophysiol. 2012;5:1027-35.
  33. Balcioğlu AS, Müderrisoğlu Н. Diabetes and cardiac autonomic neuropathy: Clinical manifestations, cardiovascular consequences, diagnosis and treatment. World J Diabetes. 2015 Feb 15;6(1):80-91. Available from: https://www.ncbi.nlm.nih.gov/pubmed/?term=M%26%23x000fc% 3Bderriso%26%23x0011f%3Blu%20H%5BAuthor%5D&cauthor=true&cauthor_uid=25685280
  34. Shurdumova MG. Patogeneticheskiye predposylki elektricheskoy nestabil’nosti miokarda u bol’nykh arterial’noy gipertoniyey i sakharnym diabetom 2 tipa. Meditsinskiy vestnik Yuga Rossii. 2015;3:8-17. Dostupno: https://doi.org/10.21886/2219-8075-2015-3-8-17 [in Russiаn].
  35. Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115(3):387-97.
  36. Koval’ SN, Starchenko TG. Osobennosti remodelirovaniya levogo zheludochka serdtsa u bol’nykh gipertonicheskoy bolezn’yu, assotsiirovannoy s sakharnym diabetom 2 tipa. Ukr. ter. Zhurnal. 2010;1:68-72. [in Ukrainian].
  37. Shipsey SJ, Bryant SM, Hart G. Cardiac hypertrophy in endocardial and epicardial myocytes. Eur. Heart J. 1996;17:3.

Publication of the article:

«Bulletin of problems biology and medicine» Issue 3 (145), 2018 year, 42-46 pages, index UDK 616.12-008.318: 616.12-008.331.1: 616.379 – 008.64

DOI: