Vlasenko N. A., Kapustnik Yu. О.

FEATURES OF THE USE OF ANTIVIRAL DRUGS FOR THE TREATMENT AND PREVENTION OF DISEASES CAUSED BY THE COVID-19 VIRAL INFECTION


About the author:

Vlasenko N. A., Kapustnik Yu. О.

Heading:

LITERATURE REVIEWS

Type of article:

Scentific article

Annotation:

Antiviral drugs ribavirin and remdesevir are of great importance in the treatment of various forms of coronavirus disease, including for the treatment of patients with severe form of it, when oxygen support is necessary for them. The mechanism of action of ribavirin is because this drug competes with guanazine and adenosine for binding with enzymes that provide DNA and RNA synthesis. Inhibition of the activity of viral polymerases is second effect. Ribavirin is a guanosine (ribonucleic) analog. It causes block of the synthesis of viral RNA. Thus, according to the mechanism of action, this drug is a nucleotide inhibitor. Ribavirin is a prodrug that is similar in structure to purine RNA. Ribavirin passes across the cell membranes and then it metabolized with the subsequent formation of mono-, di- and triphosphate. Only ribavirin triphosphate has pharmacological activity. This ribavirin triphosphate causes disruption of the synthesis of viral RNA due to a violation of RNA metabolism that occurs during virus replication. Remdesevir is a compound that contains adenosine nucleoside phosphate. The drug metabolizes in the cells of the human body with the subsequent formation of a pharmacologically active metabolite, which is nucleoside triphosphate. Remdesevir triphosphate is an analog of ATP. This drug competes with a natural ATP substrate for inclusion in the RNA chain, which creates due to action of the RNA-dependent RNA polymerase of the SARS-CoV-2 virus. The chain break delays during viral RNA replication under the influence of remdesevir. Unlike many other drugs that are terminators of the chain assembly, the effect of remdesevir is not associated with the prevention of the addition of the nucleotide, which is located immediately after it. The effect of remdesevir is realizeddue to interrupting the RNA assembly chain by adding five additional bases to the increasing RNA chain. Antiviral drugs favipiravir and its analogues avifavir, areplivir and coronavir, as well as ergoferon, can be useful only for the treatment of patients infected with SARS-CoV-2 virus, with a mild and moderate current of disease. The combined preparation lopinavir/ritonavir can be administered for facilitation of condition of patients even a severe form of coronavirus disease. In the complex of therapy of polysegmental COVID-pnemonia, it is necessary to include antibiotic drugs: semi-synthetic broad-spectrum penicillins amoxicillin, augmentin, cephalosporins, fluoroquinolones, azithromycin and doxycycline. Interferons and interferon inducers can be useful for the prevention and treatment of coronavirus disease. It is most advisable to use interferon alpha-2b and the interferon inducer cycloferon. It is advisable to use drugs that contain release-active antibodies to interferon – gamma-ergoferon and anaferon for the treatment of patients with coronavirus disease with a different severity. Besides, these preparations are useful for the prevention of COVID infection. Medicines that are made from the Solanum tuberosum plant, in particular panavir, have the greatest effectiveness for the prevention of coronavirus disease in comparison with other immunomodulating drugs of plant origin. The preventive effect of drugs from the wormwood plant, for example artemisinin, is not completely provable. The effect of arbidol for the prevention and treatment of patients with COVID infection is not completely provable also. The use of chloroquine (delagil), hydroxychloroquine (plakvenil) and other chloroquine derivatives, for example, mefloquine is not effective for the prevention and treatment of coronavirus disease.

Tags:

coronavirus disease, antiviral drugs, interferons, interferon inducers.

Bibliography:

  1. Ershov FI. Antivirusnye preparaty. 2-e izd. Moskva: GEOTAR-Media; 2006. 312 s. [in Russian].
  2. Graci JD, Cameron CE. Mechanisms of action of ribavirin against distinct viruses. Rev Med Virol. 2006 Jan/Feb;16(1):37-48. DOI: 10.1002/ rmv.483.
  3. Crotty S, Cameron C, Andino R. Ribavirin’s antiviral mechanism of action: lethal mutagenesis? J Mol Med (Berl). 2002 Feb;80(2):86-95. DOI: 10.1007/s00109-001-0308-0.
  4. Yasnecova VV, Efremovoj GN, redaktory. Lekarstvennye preparaty, primenyaemye v stomatologii. Moskva: GEOTAR-Media; 2004. 352 s. [in Russian].
  5. Tchesnokov EP, Feng JY, Porter DP, Götte M. Mechanism of Inhibition of Ebola Virus RNA-Dependent RNA Polymerase by Remdesivir. Viruses. 2019 Apr 4;11(4):326. DOI: 10.3390/v11040326.
  6. Yan VC, Muller FL. Advantages of the Parent Nucleoside GS-441524 over Remdesivir for Covid-19 Treatment. ACS Med Chem Lett. 2020 Jun 23;11(7):1361-6. DOI: 10.1021/acsmedchemlett.0c00316.
  7. Scavone C, Brusco S, Bertini M, Sportiello L, Rafaniello C, Zoccoli A, et al. Current pharmacological treatments for COVID-19: What’s next? Br J Pharmacol. 2020 Nov;177(21):4813-24. DOI: 10.1111/bph.15072.
  8. Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Götte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem. 2020 Apr 10;295(15):4773-9. DOI: 10.1074/jbc. AC120.013056.
  9. European Medicines Agency. Remdesivir Gilead: Summary on Compassionate Use [Internet]. Amsterdam, Netherlands: EMA; 2020 Apr 03 [cited 2021 Sept 23]. 45 p. Available from: https://www.ema.europa.eu/en/ documents/other/summary-compassionate-use-remdesivirgilead_en.pdf.
  10. Gordon CJ, Tchesnokov EP, Woolner E, Perry JK, Feng JY, Porter DP, et al. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem. 2020 May 15;295(20):6785-97. DOI: 10.1074/jbc.RA120.013679.
  11. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebocontrolled, multicentre trial. Lancet. 2020 May 16;395(10236):1569-78. DOI: 10.1016/S0140-6736(20)31022-9.
  12. World Health Organization. Therapeutics and COVID-19: living guideline [Internet]. Geneva: WHO; 2020 Nov 20 [cited 2021 Sept 23]. 59 p. Available from: https://apps.who.int/iris/handle/10665/336729.
  13. Newman DJ, Cragg GM. Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod. 2004 Aug;67(8):1216-38. DOI: 10.1021/np040031y.
  14. Adrio J, Cuevas C, Manzanares I, Joullié MM. Total synthesis and biological evaluation of tamandarin B analogues. J Org Chem. 2007 Jul 6;72(14):5129-38. DOI: 10.1021/jo070412r.
  15. Australian Government. Therapeutic Goods Administration. Australian Public Assessment Report for Plitidepsin [Internet]. Australia: Australian Government; 2019 May [cited 2021 Sept 23]. 587 p. Available from: https://www.tga.gov.au/sites/default/files/ausparplitidepsin-190513.pdf.
  16. Hofland P. Plitidepsin – A novel Anti-cancer Agent Possibly Active Against COVID 19 [Internet]. Onco`Zine. 2020 Mar 16 [cited 2021 Sept 23]. Available from: https://www.oncozine.com/plitidepsin-a-novel-anti-cancer-agent-possibly-active-against-covid18/.
  17. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(7):449-63. DOI: 10.2183/pjab.93.027.
  18. Baranovich T, Wong SS, Armstrong J, Marjuki H, Webby RJ, Webster RG, et al. T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. J Virol. 2013 Apr;87(7):3741-51. DOI: 10.1128/JVI.02346-12.
  19. Oestereich L, Lüdtke A, Wurr S, Rieger T, Muñoz-Fontela C, Günther S. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Res. 2014 May;105:17-21. DOI: 10.1016/j.antiviral.2014.02.014.
  20. Yamada K, Noguchi K, Kimitsuki K, Kaimori R, Saito N, Komeno T, et al. Reevaluation of the efficacy of favipiravir against rabies virus using in vivo imaging analysis. Antiviral Res. 2019 Dec;172:104641. DOI: 10.1016/j.antiviral.2019.104641.
  21. Du YX, Chen XP. Favipiravir: pharmacokinetics and concerns about clinical trials for 2019-nCoV infection. Clin Pharmacol Ther. 2020 Aug;108(2):242-7. DOI: 10.1002/cpt.1844.
  22. Cvetkovic RS, Goa KL. Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs. 2003;63(8):769-802. DOI: 10.2165/00003495-200363080-00004.
  23. Chandwani A, Shuter J. Lopinavir/ritonavir in the treatment of HIV-1 infection: a review. Ther Clin Risk Manag. 2008 Oct;4(5):1023-33. DOI: 10.2147/tcrm.s3285.
  24. Lim J, Jeon S, Shin HY, Kim MJ, Seong YM, Lee WJ, et al. The Author’s Response: Case of the Index Patient Who Caused Tertiary Transmission of Coronavirus Disease 2019 inKorea: the Application of Lopinavir/Ritonavir for the Treatment of COVID-19 Pneumonia Monitored by Quantitative RT-PCR. J Korean Med Sci. 2020 Feb 24;35(7):e89. DOI: 10.3346/jkms. 2020.35.e89.
  25. Kim JY, Choe PG, Oh Y, Kim J, Park SJ, Park JH, et al. The First Case of 2019 Novel Coronavirus Pneumonia Imported into Korea from Wuhan, China: Implication for Infection Prevention and Control Measures. J Korean Med Sci. 2020 Feb 10;35(5):e61. DOI: 10.3346/ jkms.2020.35.e61.
  26. NPF Materia Medika Holding. O primenenii lekarstvennyh preparatov «Anaferon», «Anaferon detskij», «Ergoferon» v sostave kompleksnoj terapii i profilaktiki infekcij, vyzyvaemyh koronavirusami [Internet]. 2020 Yanv 30 [cited 2021 Sept 23]. Dostupno: https://materiamedica. ru/news/about-the-use-of-drugs-anaferon-anaferon-children-alferon-in-the-complex-therapy-and-prevention-of-infections-caused-bycoronaviruses/ [in Russian].
  27. Yakovleva EV. Ergoferon: vozmozhnost’ optimal’nogo kompleksnogo podhoda v lechenii ORVI u vzroslyh. Recept. 2016;2:76-86. [in Russian].
  28. Geppe NA, Kondyurina EG, Mel’nikova IM, Sabitov AU, Perminova OA, Galustyan AN, et al. Reliz-aktivnyj protivovirusnyj preparat ergoferon v lechenii ostryh respiratornyh infekcij u detej. Effektivnost’ zhidkoj lekarstvennoj formy Ergoferona: rezul’taty randomizirovannogo dvojnogo slepogo placebo-kontroliruemogo klinicheskogo issledovaniya. Pediatriya. 2019;98(1):87-94. Dostupno: https://pediatriajournal. ru/files/upload/mags /368/2019_1_5434.pdf. [in Russian].
  29. Rafalsky V, Averyanov A, Bart B, Minina E, Putilovskiy M, Andrianova E. et al. Efficacy and safety of Ergoferon versus oseltamivir in adult outpatients with seasonal influenza virus infection: a multicenter, open-label, randomized trial. Int J Infect Dis. 2016 Oct;51:47-55. DOI: 10.1016/j. ijid.2016.09.002.
  30. Nikiforov VV, Ruzhencova TA. Klinicheskaya effektivnost’ i bezopasnost’ Ergoferona pri grippe i drugih ostryh respiratornyh virusnyh infekciyah: kriticheskaya ocenka s pozicij dokazatel’noj mediciny. Infekcionnye bolezni: novosti, mneniya, obuchenie. 2019;8(4):84-97. DOI: 10.24411/2305-3496-2019-14011. [in Russian].
  31. Zaplatnikov AL, Blohin BM, Geppe NA, Kondyurina EG, Sukalo AV, Vojtovich TN. Rezul’taty mezhdunarodnogo mnogocentrovogo issledovaniya reliz-aktivnyh antitel k interferonu gamma v lechenii grippa i ostryh respiratornyh virusnyh infekcij u detej. RMJ Medical Review. 2019;8:19-24. [in Russian].
  32. Posohova KA, Vіktorov OP. Antibіotiki (vlastivostі, zastosuvannya, vzaєmodіya). Navchal’nij posіbnik. Ternopіl’: TDMU; 2005. 296 s. [in Ukrainian].
  33. Robinson J. Everything you need to know about the COVID-19 therapy trials [Internet]. Pharmaceutical Journal. 2021 Sept 15 [cited 2021 Sept 23]. Available from: https://pharmaceutical-journal.com/article/feature/every thing-you-need-to-know-about-the-covid-19-therapytrials.
  34. Barer GM, Zoryan EM, Agapov VS, Afanas’ev VV. Racional’naya farmakoterapiya v stomatologii. Rukovodstvo dlya prakticheskih vrachej. Moskva: Litterra; 2006. 568 s. [in Russian].
  35. Sallard E, Lescure F-X, Yazdanpranh Y, Mentre F, Peiffer-Smadja N. Type 1 inter-ferons as a potential treatment against COVID-19. Antiviral Res. 2020 Jun;178:104791. DOI: 10.1016/j.antiviral.2020.104791.
  36. Andreakos E, Tsiodras S. COVID-19: lambda interferon against viral load and hyperinflammation. EMBO Mol Med. 2020 Jun 8;12(6):e12465. DOI: 10.15252/emmm.202012465.
  37. Luckaya IK, Martov VYu. Lekarstvennye sredstva v stomatologii. Moskva: Medicinskaya literatura; 2013. 384 s. [in Russian].
  38. Prokunina-Olsson L, Alphonse N, Dickenson RE, Durbin JE, Glenn JS, Hartmann R, et al. COVID-19 and emerging viral infections: The case for interferon lambda. J Exp Med. 2020 May 4;217(5):e20200653. DOI: 10.1084/jem.20200653.
  39. Hui Li, Nian Xiong, Changjun Li, Yanhong Gong, Li Liu, Heping Yang, Xiangping Tan, et al. Efficacy of ribavirin and interferon-α therapy for hospitalized patients with COVID-19: A multicenter, retrospective cohort study. Int J Infect Dis. 2021 Mar;104:641-8. DOI: 10.1016/j. ijid.2021.01. 055.
  40. Nikiforov VV, SuranovaTG, Mironov AYU, Zabozlaev FG. Novaya koronavirusnaya infekciya (COVID-19): etiologiya, epidemiologiya, klinika, diagnostika, lechenie i profilaktika. Uchebno-metodicheskoe posobie. Moskva; 2020. 55 s. [in Russian].
  41. Shul’dyakov AA, Lyapina EP, Soboleva LA, Romancov MG, Perminova TA, Kuznecov VI, et al. Ispol’zovanie induktorov interferonov v klinike infekcionnyh boleznej. Antibiotiki i khimioterapiya. 2018;63(3-4):28-36. [in Russian].
  42. Sokolova TM, Uryvaev LV, Tazulahova EB, Ershov FI, Malashenkova IK, Didkovskij NA. Individual’nye izmeneniya ekspressii genov sistemy interferona v kletkah krovi cheloveka pod vliyaniem amiksina i cikloferona. Voprosy virusologii. 2005;50(2):32-6. [in Russian].
  43. Ershov FI, Kovalenko AL, Romantsov MG. Cikloferon. Klinicheskaya farmakologiya I terapiya. Rukovodstvo dlya vrachej. Moskva, SanktPeterburgg; 1998. 109 s. [in Russian].
  44. Bazhanova ED. Tsikloferon: mekhanizm deystviya, funktsii i primeneniye v klinike. Eksperimental’naya i klinicheskaya farmakologiya. 2012;75(7):40-4. [in Russian].
  45. Tereshin VA, Sotskaya YaA, Kruglova OV. Effektivnost’ cikloferona pri lechenii i profilaktike grippa i ORVI u detej i podrostkov. Rossiyskiy Vestnik Perinatologii i Pediatrii. 2014;59(2):103-108. [in Russian].
  46. Sokolova TM, Uryvaev LV, Tazulaxova EB, Ershov FI, Malashenkova IK, Didkovskij NA. Individualnye izmeneniya ekspressii genov sistemy interferona v letkax krovi cheloveka pod vliyaniem amiksina I cikloferona. Voprosy virusologii. 2005;50(2):32-6. [in Russian].
  47. Yin M, Zhang Y, Li H. Advances in research on immuno-regulation of macrophages by plant polysaccharides. Front. Immunol. 2019;10:145. DOI: 10.3389/fimmu.2019.00145.
  48. Shim EH, Choung SY. Inhibitory effects of Solanum tuberosum L. var. vitelotte extract on 2,4-dinitrochloroben-zene-induced atopic dermatitis in mice. J. Pharm. Pharmacol. 2014;66(9):1306-16. DOI: 10.1111/jphp.12254.
  49. Kang Mah, Choung S-Y. Solanum tuberosum L. cv Hongyoung extract inhibits 2,4-dinitrochlorobenzene-induced atopic dermatitis in NC/ Nga mice. Mol Med Rep. 2016 Oct;14(4):3093-103. DOI: 10.3892/mmr.2016.5595.
  50. Douglas NM, Anstey NM, Angus BJ, Nosten F, Price RN. Artemisin combination therapy for vivax malaria. Lancet. 2010 June;10(6):405-16. DOI: https://doi.org/10.1016/S1473-3099(10)70079-7.
  51. Karomotov ID, Kahhorova SIK. Lekarstvennoye rastenije polin’ gor’kaya – chimicheskiy sostav. Biologiya i integrativnaya medicina. 2018 Okt:9(26):84-6. [in Russian].
  52. Kapustnik YuO, Bojko MG, Latoguz ІK, Kurochka YeO. Farmakoterapіya aritmіj sercya. Poltava: ASMI; 2002. 334 s. [in Ukrainian].

Publication of the article:

«Bulletin of problems biology and medicine» Issue 3 (161), 2021 year, 14-26 pages, index UDK 616.9:615. 281–085

DOI: