Bulyk R. E., Bulyk T. S., Smetanyuk O. V., Vlasova K. V., Kryvchanska M. I.

EFFECTS OF MELATONIN ON MELATONIN RECEPTOR DENSITY IN THE SUPRACHIASMATIC NUCLEUS OF RAT HYPOTHALAMUS UNDER STRESS CONDITIONS


About the author:

Bulyk R. E., Bulyk T. S., Smetanyuk O. V., Vlasova K. V., Kryvchanska M. I.

Heading:

MORPHOLOGY

Type of article:

Scentific article

Annotation:

Abstract. Introduction. In mammals, the epiphyseal hormone melatonin plays a key role in the regulation of cyclic physiological processes. Its receptors and binding sites are involved in cellular response. Limitation of motor activity (hypokinesia or immobilization) is a powerful stressor factor that causes desynchronosis. The aim is to elucidate the effect of immobilization stress on melatonin type 1A receptor density in rat hypothalamic suprachiasmatic nucleus neurons and the effects of exogenous melatonin. Materials and methods. Experiments were performed on nonlinear male white rats weighing 200-220 g. Immobilization stress was simulated by keeping rats in plastic penal cages for 6 hours daily for 7 consecutive days. Melatonin (Sigma, USA) was administered by peritoneal injection for 7 days against the background of immobilization stress. Animals were divided into 3 series, in each of which biomaterial was collected at 2 p.m. and at 2 a.m. using immunohistochemical, densitometric and statistical methods of investigation. Results. In animals under long immobilization, the optical density of specific staining of the studied structures was significantly lower than that of the control series. Melatonin injections under immobilization stress caused the index increase in rat hypothalamic SN neurons especially at 2 a.m. in comparison with animals kept under long immobilization without drug administration. Conclusions. The melatonin type 1A receptor density in neurons of the suprachiasmatic nucleus of the hypothalamus has a clear circadian rhythm, with the highest values at 2 a.m., whereas at 2 p.m. it decreases. In animals subjected to immobilization stress, the optical density of specific staining for melatonin type 1A receptors was significantly lower than in controls. Injection of melatonin caused significant increase in mean values of melatonin receptor density to melatonin type 1A in SN neurons of animals’ hypothalamus.

Tags:

suprachiasmatic nucleus, immobilization stress, melatonin.

Bibliography:

  1. Bondarenko LA, Gubina-Vakulik GI, Gevorkyan AR. Pineal’naya zheleza i gipotalamo-gipofizarno-tireoidnaya sistema: vozrastnye i khronobiologicheskie aspekty. Khar’kov: S.A.M.; 2013. 264 s. [in Russian].
  2. Zamorskiy II, Sopova IYu, Khavinson VKh. Vliyanie melatonina i epitalamina na soderzhanie produktov belkovoy i lipidnoy peroksidatsii v kore bol’shikh polushariy i gippokampe mozga krys v usloviyakh ostroy gipoksii. Byulleten’ eksperimental’noy biologii i meditsiny. 2012;154(7):59-61. [in Russian].
  3. Kiessling S, Sollars PJ, Pickard GE. Light stimulates the mouse adrenal through a retinohypothalamic pathway independent of an effect on the clock in the suprachiasmatic nucleus. PLoS One [Internet]. 2014 [cited 2019 Sep 14];9(3):e92959. Available from: https://www.ncbi. nlm.nih.gov/pmc/ articles/PMC3962469/pdf/pone.0092959.pdf. DOI: 10.1371/journal.pone. 0092959.
  4. Bedont JL, Blackshaw S. Constructing the suprachiasmatic nucleus: a watchmaker’s perspective on the central clockworks. Front Syst Neurosci [Internet]. 2015 [cited 2019 Sep 11];9:74. Available from: https://www. ncbi.nlm.nih.gov/pmc/articles/PMC4424844/pdf/fnsys-09-00074. pdf. DOI: 10.3389/fnsys.2015.00074.
  5. Fernandez F, Lu D, Ha P, Costacurta P, Chavez R, Heller HC, et al. Circadian rhythm. Dysrhythmia in the suprachiasmatic nucleus inhibits memory processing. Science. 2014;346(6211):854-7. DOI: 10.1126/science. 1259652.
  6. Venegas C, García JA, Escames G, Ortiz F, López A, Doerrier C, et al. Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res. 2012;52(2):217-27. DOI: 10.1111/j.1600-079X.2011.00931.x.
  7. Wang JL, Lim AS, Chiang WY, Hsieh WH, Lo MT, Schneider JA, et al. Suprachiasmatic neuron numbers and rest-activity circadian rhythms in older humans. Ann Neurol. 2015;78(2):317-22. DOI: 10.1002/ana.24432.
  8. Arushanian EB, Schetinin EV. Melatonin kak universal’nyy modulyator lyubykh patologicheskikh protsessov. Patologicheskaya fiziologiya i eksperimental’naya terapiya. 2016;60(1):79-88. DOI: https://doi.org/10. 25557/0031-2991.2016.01.79-88. [in Russian].
  9. Khavinson VKh, Lin’kova NS, Kvetnoy IM, Kvetnaya TV, Polyakova VO, Korf Kh. Molekulyarno-kletochnye mekhanizmy peptidnoy regulyatsii sinteza melatonina v kul’ture pinealotsitov. Byulleten’ eksperimental’noy biologii i meditsiny. 2012;153(2):223-6. [in Russian].
  10. Koptev MM, Vynnyk NI. Morphological substantiation for acute immobilization stress-related disorders of adaptation mechanisms. Wiadomosci Lekarskie 2017;70(4):767-770. Available from: https:// pubmed.ncbi.nlm.nih.gov/29064803/.
  11. Bedont JL, Newman EA, Blackshaw S. Patterning, specification, and differentiation in the developing hypothalamus. Wiley Interdiscip Rev Dev Biol. 2015;4(5):445-68. DOI: 10.1002/wdev.187.
  12. Lopes-Azevedo S, Fortaleza EAT, Busnardo C, Scopinho AA, Matthiesen M, Antunes-Rodrigues J, et al. The Supraoptic Nucleus of the Hypothalamus Modulates Autonomic, Neuroendocrine, and Behavioral Responses to Acute Restraint Stress in Rats. Neuroendocrinology. 2020;110:10-22. DOI: 10.1159/000500160.

Publication of the article:

«Bulletin of problems biology and medicine» Issue 3 (161), 2021 year, 245-248 pages, index UDK 591.185.6

DOI: