Drozdovska S. B., Polischuk A. O.

THE PARTICIPATION OF LONG NONCODING RNAs IN CARDIAC HYPERTROPHY FORMATION DURING LONGLASTING PHYSICAL EXERCISE


About the author:

Drozdovska S. B., Polischuk A. O.

Heading:

LITERATURE REVIEWS

Type of article:

Scentific article

Annotation:

Recently, a new class of RNA, long non-coding RNA (lncRNA), associated with a wide range of biological processes in response to physical exercise that can act at different levels of gene expression, has been found. A number of authors demonstrated in experiments the important role of lncRNA in normal heart development and in the development of heart diseases, in particular, it was shown that some long non-coding RNAs can act as cardiac hypertrophy factors. In order to study the role of non-coding RNA in the molecular genetic mechanisms of adaptation and pathological processes in the myocardium prolonged intensive physical exercises and substantiation of the possibility of creating a method for assessing predisposition to the development of pathological and pre-pathologic states of the heart in athletes was meta-analysis of literary sources. It was established that the predisposition to the development of myocardial hypertrophy under the influence of intense physical exertion is genetically determined and depends on the level of expression of lncRNAs. Based on their functions, LncRNAs can be divided into several subcategories according to their mode of action. Many nucleus-enriched lncRNAs can exert their functions at the transcriptional level, either through cotranscriptional interactions between the lncRNAs and transcriptional complexes or by the recruitment of such complexes like the chromatin modification enzymes, to transcription sites in cis or in trans. Many lncRNAs can act as decoys for certain molecules, such as transcriptional splicing factors in the nucleus and miRNAs to regulate the expression of targets of those biological pathways. LncRNAs can also serve as a scaffold for forming complex molecular machineries or nuclear subdomains. It has been revealed that the important and most studied lncRNAs that affect the development of the myocardium during ontogenesis and adaptation to stress factors, including physical loads, include: MIAT, NRON, MHRT, LIPCAR, CHRF, Chaer, ROR, H19, CHAST . The study of genes polymorphisms of these lncRNAs and the level of their expression in response to physical loads allow us to discover new aspects of the regulation mechanism of the adaptive response of the cardiovascular system to exercise stress. Expression of non-coding RNA genes is a potential informational marker of the course of adaptation processes to physical loads.

Tags:

long noncoding RNA, cardiac hypertrophy, athletes heart, physical exercise

Bibliography:

  • Bezuhla V.V. Kardiomiopatiya vnaslidok fizychnoho perevantazhennya / V.V. Bezuhla // Zhurnal klinichnykh ta eksperymental’nykh medychnykh doslidzhen’. – 2016. – 4 (2). – S. 226-236.
  • Belocerkovskij Z.B. Serdechnaja dejatel’nost’ i funkcional’naja podgotovlennost’ u sportsmenov (norma i atipichnye izmenenija v normal’nyh i izmenennyh uslovijah adaptacii k fizicheskim nagruzkam) / Z.B. Belocerkovskij, B.G. Ljubina. – M.: Sovetskij sport, 2012. – S. 548.
  • Gavrilova E.A. Stressornaja kardimiopatija u sportsmenov / E.A. Gavrilova // European researcher. – 2012. – T. 22, № 6-2. – S. 961-963.
  • Mihajljuk E.L. Sovremennye vzgljady na diagnostiku metabolicheskoj kardiomiopatii vsledstvie hronicheskogo fizicheskogo perenaprjazhenija organizma sportsmenov / E.L. Mihajljuk, V.V. Syvolap // Sportivnaja medicina. – 2014. – № 1. – S. 3-12.
  • Anderson D.M. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance / D.M. Anderson, K.M. Anderson, C.L. Chang [et al.] // Cell. – 2015. – V. 160, 4. – P. 595-606.
  • Andrews S.J. Emerging evidence for functional peptides encoded by short open reading frames / S.J. Andrews, J.A. Rothnagel // Nat Rev Genet. – 2014. – V. 15. – P. 193-204.
  • Bazzini A.A. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation / A.A. Bazzini, T.G. Johnstone, R. Christiano, S.D. Mackowiak, B. Obermayer, E.S. Fleming, C.E. Vejnar, M.T. Lee, N. Rajewsky, T.C. Walther [et al.] // EMBO J. – 2014. – V. 3, № 9. – P. 981-93.
  • Care A. Microrna-133 controls cardiac hypertrophy / A. Care, D. Catalucci, F. Felicetti, D. Bonci, A. Addario, P. Gallo, M.-L. Bang, P. Segnalini, Y. Gu, N.D. Dalton // Nat Med. – 2007. – V. 13. – P. 613-618.
  • Chen J-F. The role of microrna-1 and microrna-133 in skeletal muscle proliferation and differentiation / J.-F. Chen, E.M. Mandel, J.M. Thomson, Q. Wu, T.E. Callis, S.M. Hammond, F.L. Conlon, D.-Z. Wang // Nat Genet. – 2005. – V. 38. – P. 228-233.
  • De Gonzalo-Calvo D. Circulating long-non coding RNAs as biomarkers of left ventricular diastolic function and remodelling in patients with well-controlled type 2 diabetes / D. De Gonzalo-Calvo, F. Kenneweg, C. Bang [et al.] // Scientific Reports. – 2016. – V. 6. – 37354. – doi:10.1038/srep37354.
  • Devereux R.B. Impact of diabetes on cardiac structure and function: the strong heart study / R.B. Devereux, M.J. Roman, M. Paranicas, M.J. O’Grady, E.T. Lee [et al.] // Circulation. – 2000. – V. 101. – P. 2271-2276.
  • Frank S. A lncRNA Perspective into (Re)Building the Heart / S. Frank, A. Aguirre, J. Hescheler, L. Kurian // Frontiers in Cell and Developmental Biology. – 2016. – V. 4, № 128. – doi:10.3389/fcell.2016.00128.
  • Gong C. A long non-coding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation / C. Gong, Z. Li, K. Ramanujan [et al.] // Dev Cell. – 2015. – № 34 (2). – Р. 181-191.
  • Guttman M. Modular regulatory principles of large non-coding RNAs / M. Guttman, J.L. Rinn // Nature. – 2012. – V. 482, № 7385. – P. 339-346.
  • Hun P. A long noncoding RNA protects the heart from pathological hypertrophy / P. Hun, W. Li, C-H. Lin, J. Yang, C. Shang [et al.] // Nature. – 2014. – 514. – P. 102-106.
  • Jiang F. Long non-coding RNA-ROR mediates the reprogramming in cardiac hypertropy / F. Jiang, X. Zhou, J. Huang // Plos One. – 2016. – V. 11. – e152767.
  • Jing Z. Chronic cerebral hypoperfusion induces vascular plasticity and hemodynamics but also neuronal degeneration and cognitive impairment / Z. Jing, C. Shi, L. Zhu [et al.] // J Cereb Blood Flow Metab. – 2015. – V. 35. – P. 1249-1259.
  • Kumarswamy R. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure / R. Kumarswamy [et al.] // Circ Res. – 2014. – 114. – Р. 1569-1575.
  • Lee J.H. Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts / J.H. Lee, C. Gao, G. Peng, C. Greer, S. Ren [et al.] // Circ. Res. – 2011. – V. 109. – P. 1332-1341.
  • Liu L. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy / L. Liu, X. An, Z. Li, Y. Song, L. Li // Cardiovasc. Res. – 2016. – V. 111. – P. 56-65.
  • Liu N. Microrna regulatory networks in cardiovascular development / N. Liu, E.N. Olson // Dev Cell. – 2010. – V. 18. – P. 510-525.
  • Liu X. Mir-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling / X. Liu, J. Xiao, H. Zhu, X. Wei, C. Platt, F. Damilano, C. Xiao, V. Bezzerides, P. Bostrom, L. Che, C. Zhang, B.M. Spiegelman, A. Rosenzweig // Cell Metab. – 2015. – V. 21. – P. 584-595.
  • Lu L. Genome-wide survey by ChIPseq reveals YY1 regulation of lincRNAs in skeletal myogenesis / L. Lu, K. Sun, X. Chen [et al.] // EMBO Journal. – 2013. – V. 32, № 19. – P. 2575-2588.
  • Marchese F.P. The multidimensional mechanisms of long noncoding RNA function / F.P. Marchese, I. Raimondi, M. Huarte // Genome Biology. – 2017. –V. 18, 206. – P. 1-13.
  • Matkovich S.J. Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs / S.J. Matkovich, J.R. Edwards, T.C. Grossenheider, C. de Guzman Strong, G.W. Dorn // Proc Natl AcadSci USA. – 2014. – V. 111. – P. 12264-12269.
  • Melo S.F. Resistance training regulates cardiac function through modulation of mirna-214 / S.F. Melo, V.G. Barauna, M.A. Junior, L.H. Bozi, L.R. Drummond, A.J. Natali, E.M. de Oliveira // Int J Mol Sci. – 2015. – V. 16. – P. 6855-6867.
  • Mousavi K. eRNAs promote transcription by establishing chromatin accessibility at defined mgenomic loci / K. Mousavi, H. Zare, S. Dell’Orso [et al.] // Molecular Cell. – 2013. – V. 51, № 5. – P. 606-617.
  • Mueller C. MUNC: a lncRNA that induces the expression of pro-myogenic genes in skeletal myogenesis / C. Mueller, M.A. Cichewicz, B.K. Dey [et al.] // Molecular and Cellular Biology. – 2014. – doi:10.1128/MCB.01079-14.
  • Nie M. Noncoding RNAs, emerging regulators of skeletal muscle development and diseases / M. Nie, Z-L. Deng, J. Liu, D-Z. Wang // BioMed Research International. – 2015. – http://dx.doi.org/10.1155/2015/676575.
  • Ottaviani L. Non-coding RNA in cardiac hypertrophy / L. Ottaviani, C. Martins // J. Physiol. – 2017. – V. 595. – P. 4037-4050.
  • Shen Sh. Long non-coding RNAs in cardiac remodeling / Sh. Shen, H. Jiang, Y. Bei, J. Xiao, X. Li // Cellular physiology and biochemistry. – 2017. – V. 41. – P. 1830-1837.
  • Soci U. Micrornas 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats / U.P. Soci, T. Fernandes, N.Y. Hashimoto, G.F. Mota, M.A. Amadeu, K.T. Rosa, M.C. Irigoyen, M.I. Phillips, E.M. Oliveira // Physiol Genomics. – 2011. – V. 43. – P. 665-673.
  • Scheele C. The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function / C. Scheele, N. Petrovic, M.A. Faghihi // BMC Genomics. – 2007. – V. 8, № 74. – doi:10.1186/1471-2164-8-74.
  • Timmons J.A. Molecular studies of exercise, skeletal muscle, and ageing / J.A. Timmons, I.J. Gallagher // F1000Research. – 2016. – V. 5. – P. 2-9. http://dx.doi.org/10.12688/f1000research.8255.1.
  • Tripathi V. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation / V. Tripathi, J.D. Ellis, Z. Shen, D.Y. Song, Q. Pan [et al.] // Mol. Cell. – 2010. – V. 39. – P. 925-938.
  • Viereck J. Long noncoding RNA Chast promotes cardiac remodeling / J. Viereck, R. Kumarswamy, A. Foinquinos, K. Xiao [et al.] // Sci Transl Med. – 2016. – V. 8, № 326. – P. 326ra22. – DOI: 10.1126/scitranslmed.aaf1475.
  • Wang K. The Long Noncoding RNA CHRF Regulates Cardiac Hypertrophy by Targeting miR-489 / Kun Wang, Fang Liu, Lu-Yu Zhou, Bo Long, Shu-Min Yuan, Yin Wang, Cui-Yun Liu Teng Sun, Xiao-Jie Zhang, Pei-Feng Li // Circ Res. – 2014. – 114. – Р. 1377-1388.
  • Wang Z. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy / Z. Wang, X.J. Zhang, Y.X. Ji // Nat. Med. – 2016. – V. 22. – P. 1131-1139.
  • Xuan L. Circulating long non-coding RNAs NRON and MHRT as novel predictive biomarkers of heart failure / L. Xuan, L. Sun, Y. Zhang, Y. Huang, Y. Hou [et al.] // J. Cell. Mol. Med. – 2017. – V. 21, № 9. – P. 1803-1814.
  • Zhang J. Long Noncoding RNA MHRT Protects Cardiomyocytes against H2O2-Induced Apoptosis / J. Zhang, C. Gao, M. Meng, H. Tang // Biomol Ther (Seoul). – 2016. – V. 24 (1). – P. 19-24. PMCID: PMC4703348; doi: 10.4062/biomolther.2015.066.
  • Zhu J.G. Long Noncoding RNAs Expression Profile of the Developing Mouse Heart / J.G. Zhu, Y.H. Shen, H.L. Liu, M. Liu, Y.Q. Shen [et al.] // Journal of Cellular Biochemistry. – 2013. – DOI 10.1002/jcb.24733.
  • Zhu X. LncRNA MIAT enhances cardiac hypertrophy partly through sponging miR-150 / X. Zhu, Y.X. Yuan, S.L. Rao, P. Wang // Eur. Rev. Pharmacol Sci. – 2016. – V. 20. – P. 3653-3660.
  • www.noncode.org.
  • https://www.gencodegenes.org/releases/current.html.

Publication of the article:

«Bulletin of problems biology and medicine» Issue 4 Part 3 (141), 2017 year, 38-43 pages, index UDK 796.015.6:612.1+575.113.1

DOI: