EFFICIENCY OF THE A2-AGONISTS’ USE IN A NON-BARIATRIC LAPAROSCOPIC SURGERY IN PATIENTS WITH OBESITY
About the author:
Vorotyntsev S. І.
Heading:
CLINICAL AND EXPERIMENTAL MEDICINE
Type of article:
Scentific article
Annotation:
Laparoscopy in obese patients has become the main technique during operations on the organs of abdominal cavity because it facilitates the surgery process and reduces the number of postoperative complications. But during pneumoperitoneum stress hemodynamic instabilities that can cause the increase of cardiac ischemia. In general practice to avoid this they use opioid analgesics, benzodiazepines, beta-blockers, calcium channel blockers and vasodilators – drugs that are not always prescribed for patients with obesity. α2-agonists because of their anxiolytic, sedative, sympatholytic and analgesic properties are widely used in bariatric surgery and laparoscopic surgery in patients without obesity. The aim of our work was to evaluate the hemodynamic response, sedative effect and the need for analgesics in obese patients during the first 24 hours after non-bariatric laparoscopic surgery under general anesthesia with dexmedetomidine’s use. The research included 40 patients with a body mass index (BMI) over 30 kg/m2, functional class ASA I-II and age over 18 years who were scheduled to a laparoscopic cholecystectomy or fundoplication under general anesthesia with artificial lung ventilation. Using computer generated table of random numbers patients were divided into two groups: control group (Dex 0, n=20) where total intravenous anesthesia (TIVA) based on propofol, fentanyl and atracurium was conducted; study group (Dex 1/0.5, n=20) where TIVA was complemented by the injection of dexmedetomidine (loading dose – 1 mcg/kg BMI for 10 minutes, maintenance dose – 0.5 mg/kg BMI/h during the surgery. We compared value changes on heart rate and blood pressure immediately after intubation of the trachea, during pneumoperitoneum, immediately after extubation of the trachea. The level according to Ramsay sedation scale (RSS) was determined before the transfer of patients to intensive care ward, 60 min and 120 min after surgery. Evaluation of pain by visual analogue scale (VAS) was performed on the above-mentioned stages and in 6 hours after surgery. The time till the first “saving” injection of analgesic and its quantity during first 24 hours of postoperative period was observed. Incidence of dyspnea in the recovery room was controlled during two hours. Statistical analysis was provided with a program Statistica for Windows version 6.0. Demographic and clinical data of the patients did not significantly differ between two groups (p>0.05). At all the stages of the research in group Dex 1/0.5 AT was 10-15% lower than in group Dex 0 (p<0.05) and values of the heart rate didn’t differ between the groups (p>0.05). For analgesia during surgery fentanyl was used 1.5 times less in group Dex 1/0.5 than in group Dex 0 (p<0.05). For bradycardia and hypotension correction atropine and phenylephrine was used almost with the same frequency both in groups Dex 0 and Dex 1/0.5. After tracheal extubation in group Dex 1/0.5 sedation level of 4 points 15% of patients had and in group Dex 0 – none of patients (p<0.05); after 30 minutes in group Dex 1/0.5 sedation level of 3 points 40% of patients had and in group Dex 0 – 10% of patients (p<0.05); after 60 minutes in group Dex 1/0.5 sedation level of 2 points 80% of patients had and in group Dex 0 – 20% of patients (p<0.05). In group Dex 0 average time for the use of “saving” analgesia was 60 min in 100% of patients, in group Dex 1/0.5 – 360 min appropriately, and it was needed in 85% of patients (p<0.05). Patients of group Dex 0 in the first 2 hours after surgery had 2 times higher incidence of dyspnea than patients from group Dex 1/0.5 (p<0.05). The total dose of trimeperidine during 24 hours in postoperative period also was 1.5 times higher in group Dex 0 than in group Dex 1/0.5 (p<0.05). So we found that infusion of dexmedetomidine in the loading dose 1 μg/kg BMI for 10 min and maintenance dose of 0.5 μg/kg BMI/h intraoperatively control hemodynamic stress response in patients with obesity to whom non-bariatric laparoscopic surgery is provided under general anesthesia. Dexmedetomidine reduces the need for intraoperative opioid analgesics, prolongs a painless period immediately after operation thereby reducing the total demand for analgesics and incidence of postoperative respiratory depression, making it an ideal adjuvant of anesthesia during laparoscopic surgery in obese patients.
Tags:
obesity, laparoscopic non-bariatric surgery, α2-agonists, dexmedetomidin
Bibliography:
- Vorotyntsev S.I. Capnometriya dozvolyaye pokrashchity «respiratornu» bezpeku patsiyentiv z ozhirinnyam pislya operatsiy na organah cherevnoyi porozhnyny / S.I. Vorotyntsev // Visnyk problem biologii I medyciny. – 2016. – Vypusk 4, tom 1, № 133. – S. 228-232.
- Abdelmageed W.M. Analgesic properties of a dexmedetomidine infusion after uvulopalatopharyngoplasty in patients with obstructive sleep apnea / W.M. Abdelmageed, K.M. Elquesny, R.I. Shabana [et al.] // Saudi J Anaesth. – 2011. – Vol. 5. – P. 150-156.
- Bannenberg J.J.G. Hemodynamics during laparoscopy in the supine or prone position. An experimental study / J.J.G. Bannenberg, B.M.P. Rademaker, P.F. Griindeman [et al.] // Surg Endosc. – 1995. – Vol. 9. – P. 125-127.
- Bruhat M.A. The benefits and risks of laparoscopic surgery / M.A. Bruhat, C. Chapron, G. Mage [et al.] // Rev Fr Gynecol Obstet. – 1993. – Vol. 88. – P. 84-88.
- Gaszynski T. The influence of laparoscopic vs. open gastric bypass on hemodynamic function in morbidly obese patients during general anesthesia / T. Gaszynski, T. Szewczyk // Videosurgery Miniinv. – 2014. – Vol. 9, № 1. – P. 83-88.
- Ghodki P.S. Dexmedetomidine as an anesthetic adjuvant in laparoscopic surgery: An observational study using entropy monitoring / P.S. Ghodki, S.K. Thombre, S.P. Sardesai [et al.] // J Anaesthesiol Clin Pharmacol. – 2012. – Vol. 28. – P. 334-338.
- Joris J.L. Hemodynamic changes during laparoscopic cholecystectomy / J.L. Joris, D.P. Noirot, M.J. Legrand [et al.] // Anesth Analg. – 1993. – Vol. 76. – P. 1067-1071.
- Lin T.F. Effect of combining dexmedetomidine and morphine for intravenous patient-controlled analgesia / T.F. Lin, Y.C. Yeh, F.S. Lin [et al.] // Br J Anaesth. – 2009. – Vol. 102. – P. 117-122.
- Mann C. The relationship among carbon dioxide pneumoperitoneum, vasopressin release, and hemodynamic changes / C. Mann, G. Boccara, Y. Pouzeratte [et al.] // Anesth Analg. – 1999. – Vol. 89. – P. 278-283.
- Manne G.R. Effects of low dose dexmedetomidine infusion on haemodynamic stress response, sedation and post-operative analgesia requirement in patient undergoing laparoscopic cholecystectomy / G.R. Manne, M.R. Upadhyay, V. Swadia // Indian J Anaesth. – 2014. – Vol. 58. – P. 726-731.
- Mulier J.P. Perioperative opioids aggravate obstructive breathing in sleep apnea syndrome: mechanisms and alternative anaesthesia strategies / J.P. Mulier // Curr Opin Anaesthesiol. – 2016. – Vol. 29. – P. 129-133.
- Myles P.S. Development and psychometric testing of a quality of recovery score after general anesthesia and surgery in adults / P.S. Myles, J.Q. Hunt, C.E. Nightingale [et al.] // Anesth Analg. – 1999. – Vol. 88. – P. 83-90.
- Panchgar V. The effectiveness of intravenous dexmedetomidine on perioperative hemodynamics, analgesic requirement, and side effects profile in patients undergoing laparoscopic surgery under general anesthesia / V. Panchgar, A.N. Shetti, H.B. Sunitha [et al.] // Anesth Essays Res. – 2017. – Vol. 11. – P. 72-77.
- Reoch J. Safety of Laparoscopic vs Open Bariatric Surgery. A Systematic Review and Meta-analysis / J. Reoch, S. Mottillo, A. Shimony [et al.] // Arch Surg. – 2011. – Vol. 146, № 11. – P. 1314-1322.
- Scheinin B. Dexmedetomidine attenuates sympathoadrenal responses to tracheal intubation and reduces the need for thiopentone and preoperative fentanyl / B. Scheinin, L. Lindgren, T. Randell // Br J Anaesth. – 1992. – Vol. 68. – P. 126-131.
- Tinelli R. Advantages of Laparoscopy Versus Laparotomy in Extremely Obese Women (BMI>35) with Early-stage Endometrial Cancer: A Multicenter Study / R. Tinelli, P. Litta, Y. Meir [et al.] // Anticancer Research. – 2014. – Vol. 34. – P. 2497-2502.
- Tufanogullari B. Dexmedetomidine Infusion During Laparoscopic Bariatric Surgery: The Effect on Recovery Outcome Variables / B. Tufanogullari, P.F. White, M.P. Peixoto [et al.] // Anesth Analg. – 2008. – Vol. 106. – P. 1741-1748.
- Weerink M.A.S. Clinical Pharmacokinetics and Pharmacodynamics of Dexmedetomidine / M.A.S. Weerink, M.M.R.F. Struys, L.N. Hannivoort [et al.] // Clin Pharmacokinet. – 2017. – Vol. 56. – P. 893-913.
Publication of the article:
«Bulletin of problems biology and medicine» Issue 4 Part 3 (141), 2017 year, 106-111 pages, index UDK 616.381-072.1-08-036.8-056.257