Zykova N. P., Nebesna Z. M.

MORPHOLOGICAL AND MORPHOMETRIC CHANGES OF THE EXOCRINE PANCREAS AFTER EXPERIMENTAL THERMAL INJURY OF THE SKIN


About the author:

Zykova N. P., Nebesna Z. M.

Heading:

MORPHOLOGY

Type of article:

Scentific article

Annotation:

Thermal burns account for 90-95% of all exogenous injuries. Studies of histological changes and morphometric parameters of the pancreas in normal condition, as well as the impact on the body of various exogenous factors, including thermal burns, allow a more objective study of the morphological state of the organ structural components. The aim of the work is to study the dynamics of morphological and morphometric changes of the exocrine pancreas in the dynamics after experimental thermal trauma of the skin. Grade IIb burn (20% of the body surface) was applied with copper plates at temperature 97-100ºC on the epilated back skin surface of 40 experimental mature white rats for 10 seconds under thiopental sodium anesthesia. Animal decapitation was performed on 1st, 7th, 14th and 21st days of the experiment. The preparation of histological slides was carried out according to conventional method. Histological specimens were examined and documented using a MICROmed SEO SCAN optical microscope and a Vision CCD Camera. Histo- and morphometric studies after thermal burns revealed that there were significant changes in the exocrine part of the pancreas. Thus, after the burn, in all terms of the experiment there is an increase of the area of the stromal component on a 1st day by 1.99 times, on a 7th days – 3.28 times, 14th day – 3.84 times, 21st day – 4.65 times and reduction of the parenchymal component on a 1st day by 14%, 7th day – 27.5%, 14th day – 36%, 21st day – 49%; reduction of the area of acini on a 1st day – 11%, 7th day – 20%, 14th day – 25%, 21st day – 34%; increase in the area of the nucleus on a 1st day by 25%, 7th day – 52% and decrease its area on a 14th day – 15%, 21st day – 41%; increase in the area of the cytoplasm in the early stages by 7% and 9%, and in the late stages decrease in its area by 7% and 8%; with a reduction of the nuclear-cytoplasmic ratio. Therefore, severe thermal injury causes the remodeling of all structural components of the pancreas. In the early stages of the experiment, adaptive-compensatory and initial destructive processes develop, and in the later stages – there are destructive-degenerative changes.

Tags:

pancreas, thermal burn, morphometry.

Bibliography:

  1. Hew J, Parungao R, Shi H, Tsai K, Kim S, Ma D, et al. Mouse models in burns research: Characterisation of the hypermetabolic response to burn injury. Burns. 2020;46(3):663-674. DOI: https://doi.org/10.1016/j.burns. 2019.09. 014.
  2. Burmeister DM, Cerna C, Becerra SC, Sloan M, Wilmink G, Christy RJ. Noninvasive Techniques for the Determination of Burn Severity in Real Time. J Burn Care Res. 2017;38(1):180-191. DOI: 10.1097/BCR.00000 0000000 0338.
  3. Duke JM, Randall SM, Fear MW, Boyd JH, Rea S, Wood FM. Diabetes mellitus after injury in burn and non-burned patients: A population based retrospective cohort study. Burns. 2018 May;44(3):566-572. DOI: 10.1016/j. burns.2017.10.019.
  4. Elbassuoni EA, Abdel Hafez SM. Impact of chronic exercise on counteracting chronic stress-induced functional and morphological pancreatic changes in male albino rats. Cell Stress Chaperones. 2019;24(3):567-580. DOI: 10.1007/s12192-019-00988.
  5. Jeschke MG, van Baar ME, Choudhry MA, Chung KK, Gibran NS, Logsetty S. Burn injury. Nature Reviews Disease Primers. 2020 Feb 13;6(1):11. DOI: 10.1038/s41572-020-0145-5.
  6. Liu A, Ocotl E, Karim A, Wolf J, Cox B, Eliceiri K, et al. Modelling early thermal injury using an ex vivo human skin model of contact burns. Burns. 2020;46(5):1025-1027. DOI: https://doi.org/10.1016/j.burns.2020.08.011.
  7. Nguyen CM, Chandler R, Ratanshi I, Logsetty S. Handbook of Burns. Volume 1. Switzerland: Springer Cham; 2020. Chapter, Frostbite; p. 529-547.
  8. Roshangar L, Soleimani Rad J, Kheirjou R, Reza Ranjkesh M, Ferdowsi Khosroshahi A. Skin burns: Review of molecular mechanisms and therapeutic approaches. Wounds. 2019;31(12):308-315.
  9. World Health Organization. Burns [Internet]. WHO; 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/burns.
  10. MOZ Ukrainy. Nakaz № 838 vid 30.09.2013 Polozhennia pro systemu kombustiolohichnoi dopomohy v Ukraini [Internet]. MOZ Ukrainy; 2013. Dostupno: https://zakon.rada.gov.ua/laws/show/z2026-13#Text. [in Ukrainian].
  11. Ghodsi Z, Barzegar A, Salamati P. Mechanism classification of fatal injuries. Burns. 2020;46(2):492-493. DOI: https://doi.org/10.1016/j. burns. 2019.01. 015.
  12. Quesada R, Simon C, Radosevic A, Poves I, Grande L, Burdio F. Morphological changes of the pancreas after pancreaticoduodenectomy. Scientific Reports. 2019;9(1):14517. DOI: 10.1038/s41598-019-51173-1.
  13. Mohapatra S, Majumder S, Smyrk TC, Zhang L, Matveyenko A, Kudva YC, et al. Diabetes mellitus is associated with an exocrine pancreatopathy: conclusions from a review of literature. Pancreas. 2016;45(8):1104-10. DOI: 10.1097/MPA.0000000000000609.
  14. Tosti L, Hang Y, Debnath O, Tiesmeyer S, Trefzer T, Steiger K, et al. Single nucleus and in situ RNA sequencing reveals cell topographies in the human pancreas. Gastroenterology. 2021 Mar;160(4):1330-1344.e11. DOI: 10.1053 /j.gastro.2020.11.010.
  15. Protsenko OS, Shapoval OV, Teslenko HO, Rodionov MO, Voshchylin BR, Yeletskyi MS. Klinichni ta eksperymentalni doslidzhennia tkanyn pry termichnykh poshkodzhenniakh. Aktualni problemy suchasnoi medytsyny. 2019;3:4-13. [in Ukrainian].
  16. Horalskyi LP, Khomych VT, Kononskyi OI. Osnovy histolohichnoi tekhniky ta morfofunktsionalnykh metodiv doslidzhennia v normi ta pry patolohii. Zhytomyr: Polissya; 2019. 285 s. [in Ukrainian]
  17. Kozhemʺyakin YUM, Khromov OS, Boldyryeva NYE, Dobrelya NV, Sayfetdinova HA. Naukovo-praktychni rekomendatsii z utrymannia laboratornykh tvaryn ta roboty z nymy. Kyiv: Interservis; 2017. 179 s. [in Ukrainian].
  18. Kravets OV. Morfolohichni ta readaptatsiini zminy v pidshlunkovii zalozi pid vplyvom solei vazhkykh metaliv [avtoreferat]. Kharkiv: VDNZ Ukrainy «Kharkivskyi natsionalnyi med. un-t»; 2011. 25 s. [in Ukrainian].
  19. Didenko IS, Bumeister VI. Mikroskopichna budova ta morfometrychni pokaznyky ekzokrynnoi chastyny pidshlunkovoi zalozy shchuriv zriloho viku. Materialy Vseukrainskoi naukovo-praktychnoi konferentsii z mizhnarodnoiu uchastiu Indyvidualna anatomichna minlyvist orhaniv ta struktur orhanizmiv v ontohenezi, prysviachena 60-richchiu vid Dnia narodzhennia profesora Yu.T. Akhtemiichuka; 2018; Chernivtsi. Chernivtsi: Bukovynsʹkyy derzhavnyy medychnyy universytet; 2018. s. 92-94. [in Ukrainian].
  20. Kovchun VYu, Sikora VZ, Lindin MS, Sikora VV. Histomorfometrychna otsinka zmin pidshlunkovoi zalozy za umov hiperosmoliarnoi dehidratatsii. Bukovynskyi medychnyi visnyk. 2020;24(2):52-56. [in Ukrainian].

Publication of the article:

«Bulletin of problems biology and medicine» Issue 2 Part 2 (165), 2022 year, 59-69 pages, index UDK 616.37-091.8:616-001.17]-092.9

DOI: