Posokhova K. A., Zozulyak N. B., Chernyashova V. V.

Comparative Activity of Water Soluble and Liposomal Form of Quercetin in Experimental Diabetes Type II

About the author:

Posokhova K. A., Zozulyak N. B., Chernyashova V. V.



Type of article:

Scentific article


Introduction. The literature data indicate that the incidence of liver disease in diabetes mellitus (DM) is significantly higher compared with those of people who do not suffer from diabetes. When diabetes occurs metabolism, leading to multiple organ damage, including chili to liver damage, which is the central body that provides the normal course of metabolic processes in the body. One of the causes of death associated with type 2 diabetes, is a disease of the liver. In the USA diabetes as the 1st and 2nd type is the most common cause of liver disease. Moreover, liver damage is considered an independent predictor of cardio-vascular complications in patients with type 2 diabetes, and severity of liver histological changes directly correlated with early signs of atherosclerotic arteries. It is well known also that in type 2 diabetes and its cardiovascular complications activation of free radical processes are an integral part of metabolic disorders. To date, there are a number of researches that demonstrate the positive effects of bioflavonoids. Quercetin is one of the most studied bioflavonoids, besides its proven recovery effect the condition of diabetes mellitus. That is why we decided to use phosphatidylcholine liposomes that contain quercetin and water soluble form of quercetin in the conditions of oxidative stress on the background of experimental diabetes. The aim оf this study was to establish the possibility to decrease liver injury in experimental diabetes mellitus type 2 using water-soluble and liposomal forms of quercetin. Materials and methods. In experiments using rats males. Experimental animals were divided into four groups: 1 – control (intact animals), 2, 3 and 4 – animals with diabetes, the animals of groups 3 and 4 were administered according Corvitin and Lipoflavon (Borshchahivskiy him. -farm. Plant, Kyiv, 10 mg / kg, ip daily, starting 10 weeks after STZ, for 2 weeks). Modeling of type 2 diabetes was done by a single intraperitoneal administration of streptozotocin (STZ, Sigma, USA, 30 mg / kg body weight) after the previous 4 weeks Pets accepted on high fat diet. STZ was dissolved immediately prior to the introduction of a 0. 1 molar citrate buffer (pH 4,5); control group injected with the appropriate amount of citrate buffer. We investigated the serum and liver tissue. We determined: activity of ALT, AST, total bilirubin level, using standard sets OOO NPP «Fylysyt Diagnostics», Ukraine, indicators of lipid peroxidation (LPO) – lipid hydroperoxides (HPL), TBA-active products (AP), diene conjugates (DC), antioxidant status: superoxide dismutase (SOD), catalase, glutathione content (SH), the level of average molecular weight (MSM1, MSM2). The results obtained were subjected to statistical analysis in Excel using Student’s t-test at p ≤0,05. Conclusions. In experimental type 2 diabetes with obesity observed liver injury, manifested by activation of membrane lipid peroxidation, antioxidant imbalance in the components of the system, increase the activity of aminotransferases, total bilirubin content, the level of the average molecular weight in the serum. Preparations, Quercetin, and Corvitin Lipoflavon, it is more liposomal form, promote restoration of impaired in diabetes type 2 balance in the system prooxidant / antioxidant, reducing the activity of aminotransferases, total bilirubin content in the blood serum level of endogenous intoxication. The data on hepatoprotective activity of Quercetin drugs in experimental type 2 diabetes with obesity is the basis for further in-depth study of the efficacy and Corvitin, Lipoflavon and their possible future use in the clinic during this pathological process.


type 2 diabetes, liver, quercetin, corvitin, lipoflavon


  • 1. Андреева Л. И. Модификация метода определения перекисей липидов в тесте с тиобарбитуровой кислотой / Л. И. Андреева, Л. А. Кожемякин, А. А. Кишкун // Лаб. дело. – 1988. – №11. – С. 41–43.
  • 2. Гаврилов В. Б. Спектрофотометрическое определение содержания гидроперекисей липидов в плазме крови / В. Б. Гаврилов, М. И. Мишкорудная // Лаб. дело. – 1983. – №3. – С. 33–35.
  • 3. Зупанець І. А. Дослідження гострої токсичності та середньо ефективних доз кверцетину при парантеральному уведенні в умовах розвитку ниркової недостатності у щурів / І. А. Зупанець, С. К. Шебеко, Д. С. Харченко // Фармакол. та лікар. токсикол. – 2009. – №1 (8). – С. 28–32.
  • 4. Колесова О. Е. Перекисное окисление липидов и методы определения продуктов липопероксидации в биологических средах / О. Е. Колесова, А. А. Маркин, Т. Н Федорова // Лаб. дело. – 1984. – №9. – С. 540–546.
  • 5. Королюк М. А. Метод определения активности каталазы / М. А. Королюк, Л. И. Иванова, И. Г. Майорова [и др.] // Лаб. дело. – 1988. – №1. – С. 16–19.
  • 6. Оськина В. В. Среднемолекулярные пептиды спинномозговой жидкости при гнойных менингитах / В. В. Оськина, К. И. Чекалина, Н. И. Габриэлян // Лаб. дело. – 1987. – №2. – С. 23–25.
  • 7. Петринич А. О. Пероксидне окиснення ліпідів й антиоксидантний захист у хворих на гіпертонічну хворобу та в поєднанні з цукровим діабетом 2 типу / А. О. Петринич // Клінічна та експериментальна патологія – 2009. – Т. VIII, №3 (29). – С. 74–78.
  • 8. Чевари С. Роль супероксиддисмутазы в окислительных процессах клетки и метод определения её в биологических материалах / С. Чевари, И. Чаба, И. Секей // Лаб. дело. – 1985. – №11. – С. 678–681.
  • 9. Archakov A. I. Action of phospholipids on hydrophobic microsomal proteins / A. I. Archakov, V. yu. Uvarov // Phosphatidylcholine (Polyenephosphatidylcholine / PPC): Effects on cell membranes and transport of cholesterol / Eds. A. I. Archakov, K. J. Gundermann. – wbn – Verlag, Bingen / Rhein. – 1989. – P. 127–136.
  • 10. Booth G. Liver at 50% Greater Risk in Diabetes / G. Booth // Diabetes In Control. – 2010. – №527(27). – Pежим доступу: http://www. diabetesincontrol. com/index. php?option=com_content&view=article&id=9504&catid=1&Itemid=17.
  • 11. Ellman G. L. Tissue sulfhydryl groups / G. L. Ellman // Arch. Biochem. Biophys. – 1959. – № 82. – Р. 70–77.
  • 12. HuiJie Wang. Low dose streptozotocin (STZ) combined with highenergy intake can effectively induce type 2 diabetesthrough altering the related gene expression / HuiJie Wang, yuan Xiang Jin PhD, Wan Shen, [et al] // Asia Pac J ClinNutr – 2007. – №16 (Suppl 1). – P. 412–417.
  • 13. Xiu-HuaShen. Vitamin E regulates adipocytokine expression in a rat modelof dietary-induced obesity / Xiu-HuaShen, Qing-ya Tang, Juan Huang // Experimental Biology and Medicine. – 2010. – №235. – P. 47–51.
  • 14. Targher G. Nonalcoholic fatty liver disease is independently associated with an increased incidence of cardiovascular events in type 2 diabetic patients / G. Targher, L. Bertolini, S. Rodella [et al.] // Diabetes Care. – 2007. – №8, Vol. 30. – P. 2119–2121.
  • 15. Porepa L. Newly diagnosed diabetes mellitus as a risk factor for serious liver disease / L. Porepa // Diabetes In Control. – 2010. – №526. – Pежим доступу: http://www. diabetesincontrol. com/index. php?option=com_content&view=article&id=9 504&catid=1&Itemid=17

Publication of the article:

«Bulletin of problems biology and medicine» Issue 2 part 3 (109), 2014 year, 179-182 pages, index UDK 615. 356-06:616. 379-008. 64]-092. 9