Zaychenko A. V., Gorchakova N. A, Klymenko O. V., Shumeiko O. V., Sorocopud K. Ju., Klymenko O. G.

PHARMACDYNAMICS OF AMINOACIDS


About the author:

Zaychenko A. V., Gorchakova N. A, Klymenko O. V., Shumeiko O. V., Sorocopud K. Ju., Klymenko O. G.

Heading:

LITERATURE REVIEWS

Type of article:

Scentific article

Annotation:

Abstract. Aminoacids play important role in organisms. They are substracts for protein synthesis, regulate and take place in biochemical processes. In cardiology aminoacids have important significance in functions and metabolism of cardio-vascular system in norm and pathology. Last years the scientists have been interested in the aminoacids with branch chain such as leucine, isoleucine, and valine. It has been found that these aminoacids have participate meaning as bioenergic fuel in chronic hypoxia, take place in mitochondrial biogenic stimulation, have adaptive function. Leucine is used in clinical practice and sport medicine to increase capacity for work and to realize antistress properties. It has antiatherogenic influence also. L-arginine is used in cardiology for cardiac insufficiency, ischemic heart disease, cardiosclerosis, arterial hypertension treatment as compound of complex pharmacotherapy. L-arginine is a structural component of NO synthase catalizing NO synthesis in endothelial dysfunction. It promotes the normalization of intracellular metabolism, increases the content of taurine, ornitine, glycine in the serum that can be considered as compensatory, protective reaction in myocardial ischemia. L-arginin has antiatherogenic properties also because it inhibits the oxidation of low density lipoproteins. L-glutaminic acid has antioxidantantistressive activity, increases the contractility of myocardium. The potassium and magnesium asparaginate supplies energetic metabolism, level of potassium, magnesium, has antianginal, antiarrythmic properties. Sulfur-containing aminoacids play the important role in cardiology. Cystein is a component of the thiol enzymes. Acetylcystein has expectorant, cardioprotective antitoxic action. Cystein is transformed into taurine. Taurine dilates the vessels, has antioxidant, antiaggregate, hypoglycemic, antitoxic radioprotective influence, may increase contractility of myocardium. Taurine is a component of the medicine Cratal that is prescribed for cardiovascular pathology and metabolite syndrome treatment. Glycine has antiatherosclerotic influence because it promotes chloride ions entrance into the cells leading to the triglyceride content low. In neurology and psychiatry, the amino acids are used in the complex pharmacotherapy. Glycine was the first cerebroprotector, realizes neurotrophic effect by influence on prooxidant-antioxidant and energy metabolism. The hyperactivation of glutamatergic system plays important role in the pathophysiology of multiple sclerosis. The drugs for this disease treatment regulate the activity of glutamatergic system. L-arginine is included in neurological and psychiatric diseases treatment, because it furthers normal cortex functions. L-arginine is prescribed for depressive status, mitochondrial encephalopathy treatment. Contrary in Alzheimer disease the level of L-arginine is increased that`s why in this case it is necessary to prescribe drugs decreasing L-arginine level. The aminoacids may be used in gastroenterological diseases especially in hepatitis and cirrhosis. In non-alcohol disease of liver leucine has hepato, neuro, and also nephroprotective action. Sulfurcontaining aminoacids such as: taurine, N-adenosylmethionine possesses hepatoprotective action in nonalcohol liver hepatitis. Glutargine (L-arginine+acidum glutaminicum) has antioxidant hepatoprotective action, it is effective in hepatite with intrahepatic cholestasis. Therefore, the literary sources have shown that aminoacids may be important and necessary components of pharmacotherapy in cardiology, neurology and gastroenterology.

Tags:

aminoacids, pharmacology, cardio-vascular, neurological, gastroenterological diseases.

Bibliography:

  1. Chekman IS, Syirovaya AO, Novikov IV, Makarov VA, Andreev SV, Shapoval LG. Aminokislotyi – nanorazmernyie molekulyi: klinikolaboratornyie issledovaniya. Harkov: FOP Tomenko YU.I; 2014. 15 s. [in Russian]
  2. Huang Y, Zhou M, Sun H, Wang Y. Branched-chain amino acid metabolism in heart disease: an epiphenomenon or a real culprit? Cardiovascular research. 2011;90(2):220-3.
  3. Syirovaya AO, Shapoval LG, Makarov VA, Petunina VN, Grabovetskaya ER. Aminokislotyi glazami himikov, farmatsevtov, biologov: v 2-h tomah. T. 2-H.: Schedra sadiba plyus; 2015. 280 s. [in Russian]
  4. D’Antona G, Ragni M, Cardile A, Tedesco L, Dossena M, Bruttini F. Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell metabolism. 2010;12(4):362-72.
  5. Mykhailovska NS, Stetsiuk IO, Kulynych OO, Lisova OO. Klinichna efektyvnist zastosuvannia L-arhininu u khvorykh na ishemichnu khvorobu sertsia ta metabolichnyi syndrom. Semeinaia medytsyna. 2019;2(83):59-65. [in Ukrainian]
  6. Zhdan VM, Khaimenova HS, Babanina MIu, Katerynchuk OI, Volchenko HV. Vyznachennia efektyvnosti terapii ishemichnoi khvoroby sertsia. Aktualni problemy suchasnoi medytsyny. 2019;119(3):27-30. [in Ukrainian]
  7. Sokolova LK, Pushkarov VM, Tronko M. L–arhinin u normi ta patolohii. Endokrynolohiia. 2019;24(4):373-85. [in Ukrainian]
  8. Neal N, Meininger CJ, Keddy D. Safety and effectiveness of arginine in adults. J. Nutr. 2016;136(12):2587-2593. doi:10.3945/jn.116.234740.
  9. Zavalska HV, Bohdan YY. Vplyv antyoksydantnoi terapii ta L-ahhininu na spektr zamisnykh aminokyslot v syrovattsi krovi khvorykh na nestabilnu stenokardiiu. Likarska sprava. 2019;1(2):63-4. [in Ukrainian]
  10. Shumakov VO, Tereshchenko NM, Voloshyna OV, Tereshkovych LP, Malynovska IE. Efektyvnist kombinovanoho preparatu L -arhininu ta L-karnitynu v terapii patsiientiv z hostrym infarktom miokarda. Ukrainskyi kardiolohichnyi zhurnal. 2019;5:63-6. [in Ukrainian]
  11. Nikitin DS. L-arginin v sostave standartnoy farmakoterapii gipertonicheskoy bolezni, komorbidnoy rasstroystvom adaptatsii, bezopasnosti dlitelnogo lecheniya. Prikladnyie informatsionnyie aspektyi meditsinyi. 2019;22(5):79-94. [in Russian]
  12. Mykhailovska NS, Stetsiuk IO, Kulynych TO, Lisova OO. Klinichna efektyvnist zastosuvannia L-arhininu u khvorykh na ishemichnu khvorobu sertsia ta metabolichnyi syndrom. Simeina medytsyna. 2019;2(82):59-65. [in Ukrainian]
  13. Sudar-Milovanovic E, Obradovic M, Jovanovic A, Zarie B, Zafirovic S, Panic A. Benefits of L-arginine on cardiovascular system. Mini Rev. Med. Chem. 2015;6(2):94-103.
  14. Treschinskaya MA. Antieydzhingovyiy effekt L-arginina. Meditsina neotlozhnyih sostoyaniy. 2012;3(42):50-4. [in Russian]
  15. Tyurenkov IN, Perfilov VN, Sadikova IV, Berestovitskaya VM, Vasileva OS. Vliyanie novogo proizvodnogo glutaminovoy kislotyi na pokazateli sokratimosti mIokarda stressovannyih zhivotnyih v usloviyah blokadyi sinteza oksida azota. Byulleten eksperimentalnoy biologii i meditsinyi. 2016;159(3): 366-8. [in Russian]
  16. Spasov AA, Kosolapov VA. Primenenie L-asparaginata i kombinatsii soley magniya s vitaminom V6 v meditsine. Rossiyskiy med. zhurnal. 2017;23(2):89-95. [in Russian]
  17. Bohdan TV, Dobrovolska IYu, Lavor YaM, Morhun IL, Cherednichenko YuV, Yakovenko AYu. Rol sirkovmisnykh aminokyslot ta yikhnikh pokhidnykh u patohenezi aterosklerozu. Therapia. 2017;2(117):44-5. [in Ukrainian].
  18. Nechaeva GI, Druk IV, Ryapolova EA. Effektivnost i perenosimost taurina u patsientov s saharnyim diabetom 2-go tipa i diastolicheskoy disfunktsiey levogo zheludochka. Poliklinika. 2015;1:58-62. [in Russian]
  19. Schaffer SW, Shimada-Takamura K, Jong CJ. Impaired energy metabolism of the taurine deficient heart. Amino AQcids. 2016;48(2): 549-558.
  20. Antsiferov MB. Rol taurina i ego defitsita v organizme cheloveka i zhivotnyih. Farmateka. 2012;16:60-78. [in Russian]
  21. Statsenko ME, Turkina SV, Shilina NN, Vinnikova AA. Endotelioprotektorn svoystva taurina u bolnyih s hronicheskoy serdechnoy nedostatochnostyu i saharnyim diabetom 2 tipa. Kardiovaskulyarnaya terapiya i profilaktika. 2016;15(2):38-44. [in Russian]
  22. Vasileva IS, Rezvin VV. Izuchenie vliyaniya taurina na klinicheskoe techenie stenokardii napryazheniya u patsientov s postinfarktnyim kardiosklerozom. Ros. kardiol. zhurnal. 2018.4(156):82-8. [in Russian]
  23. Kim C, Cha YN. Taurine chloramines produced from taurine under inflammation provides anti-inflammatory and cytoprotective effects. Amino Acids. 2014;46(1):89-100.
  24. Kuznetsova SM, Krasnochenko ID. Rol taurina i ego defitsita v patogeneze serdechno-sosudistyih zvbolevaniy i diabeta. Zhurnal nevrologii im. B. M. Mankovskogo. 2018;6(2):27-32. [in Russian]
  25. Zviahina TS. Vplyv taurynovmisnoho preparatu “kratal” na rozvytok metabolichnoho syndromu, indukovanoho vysokoiu zhyrovoiu diietoiu. Problemy endokrynnoi patolohii. 2013;2:61-73. [in Ukrainian]
  26. Horbenko NI, Zviahina TS, Borikov OYu, Shalamai AS. Vplyv taurynvmisnoho preparatu Kratal na oksydatyvnyi status mitokhondrii sertsia shchuriv iz metabolichnym syndromom. Endokrynolohiia. 2015;20(3): 594-8. [in Ukrainian]
  27. Beketova GV, Soldatova OV. Atsetiltsistein:sovremennyie vozmozhnosti primeneniya v praktike pedIatra i semeynogo vracha. Sovremennaya pediatriya. 2018;7(95):69-76. [in Russian]
  28. Effin D, Jallouli M, Annali A, Gharbi N, Elfaraa S, Laszam MM. A mineview on N-acetylcysteine. An old drug with new approaches. Life Sci. 2016;151:359-61.
  29. Salamon S, Kramar B, Marolt TP, Poljsak B, Milisav I. Medical and Dietary uses of N- acetylcysteine. Antioxidant. 2019;8(5):111-3.
  30. Bohdan TV, Dobrovolska IYu, Lover YaM, Morhun IL, Cherednichenko YuV, Yakovenko AYu. Rol sirkovmisnykh aminokyslot ta yikh amidiv v patohenezi aterosklerozu. Vrachebnoe delo. 2018;7:12-16. [in Ukrainian]
  31. Michas G, Micha R, Zampelas A. Dietaryfatsandcardiovasculardisease: puttingtogetherthepiecesof a complicatedpuzzle. Atherosclerosis. 2014;234:320–8.
  32. Rom O, Grajeda-Iglesias C, Najjar M. Dietary fats and cardiovascular disease: putting together the pieces of a complicated puzzle. Atherosclerosis. 2014;234(2):320-38.
  33. Rom O, Aviram M. It is not just lipids: proatherogenic vs. antiatherogenic roles for amino acids in macrophage foam cell formation. Current opinion in lipidology. 2017;28(1):85-7.
  34. Zhao Y, Dai XY, Zhou Z, Zhao GX, Wang X, Xu MJ. Leucine supplementation via drinking water reduces atherosclerotic lesions in apoE null mice. Acta Pharmacol Sin. 2016;37:196–203.
  35. Shah SH, Bain JR, Moehlbauer MJ, Stevens RD, Crosslin DR, Haynes C. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ Cardiovasc Genet. 2010;3: 207-14.
  36. Gannon NP, Schnuck JK, Vaughan RA. BCAA metabolism and insulin sensitivity–Dysregulated by metabolic status? – Mol Nutr Food Res. 2018;62: e1700756.
  37. Pedersen HK, Gudmundsdortir V, Nielsen HB. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376-80.
  38. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311-26.
  39. Bifari F, Nisoli E. Branched-chain amino acids differently modulate catabolic and anabolic states in mammals: a pharmacological point of view. Br J Pharmacol. 2017;174:1366–77.
  40. Sun L, Hu C, Yang R. Association of circulating branched-chain amino acids with cardiometabolic traits differs between adults and the oldest-old. Oncotarget. 2017;8:88882–93.
  41. Paramjit S,Tappia PS, Thliveris J, Xu YJ, Aroutiounova N, Dhalla NS. Effects of amino acid supplementation on myocardial cell damage and cardiac function in diabetes. Exp.Clin.Cardiol. 2011;16(3):e17–e22.
  42. Ito T, Schaffer SW, Azuma J. The potential usefulness of taurine on diabetes mellitus and its complications. Amino acids. 2012;42(5): 1529-39
  43. Rizzo AM, Berselli P, Zava S. Endogenous antioxidant sandradical scavengers. Adv Exp Med Biol. 2011;698:52–67.
  44. Kucherenko L, Belenichev I, Mazur I, Khromylova O, Parniuk N. Influence of the fixed combination of glycine with thiotriazoline on energy metabolism parameters in brain conditions of experimental cerebral ischemia. J Fac Pharm Ankara 2018;42(1):14-21.
  45. Khromylova OV. Shchodo poiednannia hlitsynu ta tiotryazolinu v odnii likarskii formi. Aktualni pytannia farmatsevtychnoi i medychnoi nauky i praktyky. 2019;12(2):181-3. [in Ukrainian]
  46. Ali-Sisto T, Tolmunen T, Viinamaki H. Global arginine bioavailability ratio is decreased in patients with major depressive disorder. Journal of Affective Disorders. 2018;229:145-51.
  47. Koga Y, Povalko N, Inoue E, Nakamura H, Ishii A, Suzuki Y. Therapeutic regimen of L-arginine for MELAS: 9-year, prospective, multicenter, clinical research. J Neurol. 2018;265(12):2861-74.
  48. Chia NI, Lin CN, Huang CC, Huang KL, Lin KJ, Yen TC, Kuo HC. A metabolitic approach to identifying biomarkers in blood of Alzheimer’s disease. Annals of clinical and translational neurology. 2019;6(3):537-45.
  49. Mapstone M, Lin F, Nalls MA. What success can teach us about failure: the plasma metabolome of older adults with superior memory and lessons for Alzheimer’s disease. Neurobiology of aging. 2017;51:148-55.
  50. Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE, Vitek MP. Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflammation. 2006;3:1–12.
  51. Liu P, Fleete MS, Jing Y. Altered arginine metabolism in Alzheimer’s disease brains. Neurobiology of aging. 2014;35(9):1992-2003.
  52. Kan MJ, Lee JE,Wilson JG. Arginine deprivation and immune suppression in a mouse model of Alzheimer’s disease. J Neurosci. 2015;35:5969–82.
  53. Sarchielli P, Greco L, Floridi A, Gallai V. Excitatory amino acids and multiple sclerosis: evidence from cerebrospinal fluid. Arch. Neurol. 2003;60: 1082–88.
  54. Al Gawwam G, Sharquie IK. Serum glutamate is a predictor for the diagnosis of multiple sclerosis. 2017;2017:ID9320802.
  55. Cicalini I, Rossi C, Piragostino D, Agnifili L. Integrated lipidomics and metabolomics analysis of tears in multiple sclerosis: an insight into diagnostic potential of lacrimal fluid. Int. J. Mol. Sci. 2019;20(6):1265-70.
  56. Benussi A, Alberici A, Buratti E. Toward a glutamate hypothesis of frontotemporal dementia. Frontiers in neuroscience. 2019;13:304-9.
  57. Levite M. Glutamate, T cells and multiple sclerosis. Journ. Neurol. Transm. (Viena). 2017;124(7):775-798.
  58. Macrez R, Syys P.K, Vivien D, Lipton SA, Docagne F. Mechanisms of glutamate toxicity un multiple sclerosis:biomarkers and therapeutic opportunities. Lancet. 2016;15(10):1089-102.
  59. Landi D, Vollaro S, Penegrini G, Vulas D, Ghazaryan А, Falato E, et al. Oral fingolimod reduces glutamate-mediatedcortical excitability in xing remmiting multiple sclerosis. Clin. Neurophysiol. 2015; 125:165-169.
  60. Luchtman D, Gollan R, Tllwardt E ,Birkeestock J. In vivo and in vitro effects of multiple sclerosis immunomodulatory therapeutics on glutamatergic excitotoxicity. J. Neurochem. 2016;136:971-980.
  61. Li Y, Hai X, Qi Q, Wang L, Yang S, Zhang Y. Scavenging of blood glutamate for enhancing brain to blood glutamate efflux. Mol. Mrd. Rep. 2014; 9:305-10.
  62. Kuzmina UM, Zaynullina LF, Vahigov VA, Bahtiyarova BZ, Vahatova YuV. Rol glutamata v patogeneze rasseyannogo skleroza. Zhurnal nevrologii im. S. S. Korsakova. 2019;19(8):160-187. [in Russian]
  63. Kawaguchi T, Taniguchi E, Sata M. Effects of oral branched-chain amino acids on hepatic encephalopathy and out come inpatients with liver cirrhosis. Nutr Clin Pract. 2013;28(5):580-8.
  64. Gluud LL, Dam G, Les I, Marchesini G. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev. 2017;5(5): CD001939. doi: 10.1002/14651858.CD001939.pub4.
  65. Kawaguchi T, Shiraishi K, Furnilto T. Branched-сhain аmino аcids рrevent the patocarcinogenesis and prolong survival of patients with cirrhosis. Clinical Gastroenterology and Hepatology 2014;12:1012–18.
  66. Hagiwara A, Nishiyama M, Ishizaki S. Branched-chain amino acids prevent insulin-induced hepatic tumor cell proliferation by inducing apoptosis through mTORC1 and mTORC2-dependent mechanisms. Journ. Cell Physiol. 2012;227: 2097–105.
  67. Gaggini M, Carli F, Rosso C. Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance. Hepatology. 2018;67(1):145-58.
  68. Batyirevich AV, Rakevich MV. Vyiyavlenie narusheniy funktsii pecheni na osnovanii morfologicheskogo issledovaniya eyakulyata. Laborator. diagnostika. Vostochnaya Evropa. 2017;6(1):130-2. [in Russian]
  69. Kukovska II. Zminy funktsionalnoho stanu nyrok u shchuriv pid vplyvom syntetychnoho analohu leikyn-enkefalinu dalarhinu pry znyzhenni aktyvnosti renin-anhiotenzyn-aldosteronovoi systemy. Bukovynskyi med. zhurnal. 2012; 16(3):146-8. [in Ukrainian]
  70. Danchenko OP, Pentiuk OO. Otsinka protektornoi dii trymetazydynu, tiotryazolinu, taurynu ta ubikhinonu na indukovanu symvastatynom mio- ta hepatotoksychnist u shchuriv z hiperkholesterynemiieiu. Sovremen. problemы toksykolohy. 2008;13:61-7. [in Ukrainian]
  71. Chistik T. Mesto S-adenozilmetionina (Geptral) v lechenii nealkogolnoy zhirovoy bolezni pecheni. Gastroenterologiya. 2018;154(1):82-6. [in Russian]
  72. Kalko KO, Drohovoz SM, Kairo OO, Pozdniakova AYu. Tsyrkadni osoblyvosti antyoksydantnykh ta membranoprotektornykh vlastyvost. hlutarhinu v umovakh hostroho determinovanoho paratsetamolovoho hepatytu. Klinichna farmatsiia. 2017;21(2):46-51. [in Ukrainian]

Publication of the article:

«Bulletin of problems biology and medicine» Issue 1 (159), 2021 year, 264-272 pages, index UDK 616. 12-009. 72-088. 224:615. 22:577. 112. 3

DOI: