Zaychenko G. V., Gorchacova N. A., Doroshenko A. I., Ryzhenko I. M., Klimenko O. V.

PROSPECTS OF INNOVATIVE NANOCOMPSITE CREATION WITH SORBTIVE AND ANTIMICROBIAL PROPERTIES


About the author:

Zaychenko G. V., Gorchacova N. A., Doroshenko A. I., Ryzhenko I. M., Klimenko O. V.

Heading:

LITERATURE REVIEWS

Type of article:

Scentific article

Annotation:

Problem of the wounds treatment including the purulent wounds is one of the priority tasks. The search of the new methods of the wounds treatment approach is connectеd with increase of the natural and technogenic catastrophes, military conflicts, conditional traumatism. The treatment of wounds must be complex including the antimicrobial drugs (antibiotics, antiseptics), reparants, remedies of liquid compensation, surgical and physiotherapeutic methods use. Last years the sorbents are used for the purulent wounds treatment. The sorbents have the wide sorbtion surface. During the sorbtion process the toxic metabolites connect with sorbents. The sorbents are used for limphosanitation and detoxication. The sorbents are distinguished by size, volume of pores and chemical nature of surface. In the medicine more often carbon activators and silica sorbents are prescribed. The silica sorbents have sorbtion, antimicrobial, limphodetoxicative, limphodrenage, immunoregulative properties and are recommended for application sorbtion. The sorbents with immobilize enzymes and reparants have the great significance. The sorbents help to defend the tissues from hypoxia, decrease the microcirculation disturbances, remove the metabolism changes, realize limphosanation and detoxication. After treatment with sorbents the tissues hyperhydration is fallen. There are nanoparticles of heavy metals such as silver, gold, cuprum, ferrum, polymers and their compounds, for example with nanosilica possessing antimicrobial and wounds healing properties. There was prospected and inoculated nanosilica sorbent “Sorbex” with antimicrobial, detoxication effects. Except of sorbtive and antimicrobial actions nanosilica compounds decrease pathogenetic filter. Toxicity of nanometals with silica in composites is less than toxicity of metals. Polymer compounds also have antimicrobial properties and wounds healing properties. It was inoculated the nanocomposite of nanodisperse silica with polymer polymethylensyloxane for the wounds healing. This composite has sorbtion, osmotic activity and antimicrobial, antitoxic influence. One of the guanidine polymer derivatives polyhexamethylenguanidine is used in medicine, veterinary, agrical culture in gel form. It was shown that polyhexamethylenguanidine has antimicrobial, antifungial and wounds healing properties in vitro and in vivo. It caused quicker burn wounds healing than referant drug levomecol. Under the polyhexamethylenguanidine influence the cutting wound has been healed quicker than the wound in the control animals. Polyhexamethylenguanidine is active opposite many polyresistant microbes and mold fungi on which the antibiotics don`t influence. Polyhexamethylenguanidine as one of the antiseptics and desinfective drugs, may be used in solution, in gel. Comparatively with chlorhexidinum polyhexamethylenguanidine influences on the more resistant microorganisms and fungi. Polyhexamethylenguanidine may influence as cation detergent, damages cells membranes acting on the lypopolysaccharides and mureine components of the cells’ membranes leading to the cells` lysis. Also the polymer may influence on the activity of cells enzymes. There are experiments that are shown that polyhexamethylenguanidine in inhalation may damage the lungs epithelium, cause fibrosis of lungs cells because of cytokines induction. The innovative composite consisting of polyhexamethylenguanidine with nanodisperse silica should be less toxity, more safety and more active than its components. The further investigations of the innovative composite sorbtive, antimicrobial, immunomodulating, antiinflammatory and metabolite effects will widen the knowledge about its properties.

Tags:

polyhexamethylenguanidine, nanodisperse silica, antimicrobial, sorbe properties, wounds treatment

Bibliography:

  1. Mohova OS. Sovremennye metody lechenija gnojnyh ran. Zhurnal anatomii i gistopatologii. 2013;2(4):15-21. [in Russian].
  2. Dobrokvashin SV, Izmajlov AG, Volkov DE. Novye tehnologii v lechenii gnojnyh ran i polostej. Vestnik jeksperimental’noj i klinicheskoj hirurgii. 2011;4(4):822-3. [in Russian].
  3. Isaev UM. Lechenie gnojnyh ran pri mestnoj ozonoterapii na fone nizkochastotnyh magnitnyh polej. Vestnik novyh medicinskih tehnologij. 2011;1:111-2. [in Russian].
  4. Mnihovich MV, Eremin NV. Jeksperimental’no-morfologicheskij analiz gistogeneza kozhnoj rany pod vlijaniem nizkointensivnogo lazernogo izluchenija. Vestnik novyh medicinskih tehnologij. 2013;20(2):113-20. [in Russian].
  5. Gluhov AA, Novomlinskij VV, Ivanov VM. Primenenie jendoskopicheskoj gidropressivnoj sanacii i programmnogo drenirovanija v kompleksnom lechenii bol’nyh s flegmonami i abscessami mjagkih tkanej. Vestnik jeksperimental’noj i klinicheskoj hirurgii. 2009;2(2):122-8. [in Russian].
  6. Shostakovich-Koreckaja LR. Problema antimikrobnoj rezistentnosti v terapii ostryh respiratornyh zabolevanij u detej. Sovremennaja pediatrija. 2012;1:70-5. [in Russian].
  7. Rachkovskaja LN, Bgatova NP, Letjagin AJu. Biologicheskie svojstva sorbentov i perspektivy ih primenenija. Uspehi sovremennoj biologii. 2014;134(3):236-48. [in Russian].
  8. Fenelonov VB. Vvedenie v fizicheskuju himiju formirovanija supramolekuljarnoj struktury adsorbentov i katalizatorov. Izd-vo Sib. otd-nija Ros. akad. nauk; 2004. 495 s. [in Russian].
  9. Badronov RR, Nijazova FR, Gabitov VH. Strukturnye izmenenija v mjagkih tkanjah gnojnoj rany na fone alloksanovogo diabeta pri sorbcionnoj detoksikacii. Problemy jeksper., klin. i profilakt. limfologii: mater. mezhd. simp. Novosibirsk: NIIKJeL SO RAMN; 2000. s. 30-3. [in Russian].
  10. Ljubarskij MS, Shevela AI, Nimaev VV. Applikacionno-limfokorrigirujushhaja mestnaja terapija gnojnyh ran na fone saharnogo diabeta. Problemy jeksper., klin. i profilakt. limfologii: Mater. mezhd. simp. Novosibirsk: NIIKJeL SO RAMN; 2000. s. 188. [in Russian].
  11. Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small. 2009;5(23):2673-7.
  12. Rambidi NG. Nanotehnologija i molekuljarnye komp’jutery. M.: FIZMATLIT; 2007. 256 s. [in Russian].
  13. Whitesides GM. Nanoscience, nanotechnology, and chemistry. Small. 2005;1(2):172-9.
  14. Markelov DA, Nicak OV, Gerashhenko II. Sravnitel’noe izuchenie adsorbcionnoj aktivnosti medicinskih sorbentov. Himiko-farmacevticheskij zhurnal. 2008;42(7):30-3. [in Russian].
  15. Rozenfeld LH, Moskalenko VF, Chekman IS, Movchan BO. Nanotekhnolohii, nanomedytsyna: perspektyvy naukovykh doslidzhen ta vprovadzhennia yikh rezultativ u medychnu praktyku. Ukr. med. chasopys. 2008;67(5):63-8. [in Ukrainian].
  16. Bieliaiev PV, Viltsaniuk OA. Porivnialna tsytolohichna otsinka perebihu ranovoho protsesu u khvorykh z hniino-zapalnymy protsesamy shchelepno-lytsovoi dilianky pry mistsevomu likuvanni riznymy metodamy. Klinichna khirurhiia. 2017;11(2):2-5. [in Ukrainian].
  17. Shitov DJu, Babina KS, Pachina AN, Kravchenko TP. Nanokompozity na osnove polijetilena. Uspehi v himii i himicheskoj tehnologii. 2014;28(3):83-5. [in Russian].
  18. Simonov PV. Farmakolohichna aktyvnist nanochastynok midi v umovakh eksperymentalnoi modeli abstsesiv shkiry i miakykh tkanyn. Ukrainskyi naukovo-medychnyi molodizhnyi zhurnal. 2015;(4):134-40. [in Ukrainian].
  19. Viltsanyuk OA, Belyayev PV, Viltsanyuk OO, Vernygorodskyi SV. Porivnialna otsinka efektyvnosti vykorystannia kompozytsii na osnovi nanodyspersnoho kremnezemu z antymikrobnymy vlastyvostiamy dlia mistsevoho likuvannia hniino-zapalnykh protsesiv. Klinicheskaia khirurgiia. 2017;2:13-5. [in Ukrainian].
  20. Babushkina IV. Vlijanie nanochastic metallov na regeneraciju jeksperimental’nyh ran. Vestnik jeksperimental’noj i klinicheskoj hirurgii. 2013;6(2):217-21. [in Russian].
  21. Grigor’ev MG, Babich LN. Ispol’zovanie nanochastic serebra protiv social’no znachimyh zabolevanij. Molodoj uchenyj. 2015;(9):396-401. [in Russian].
  22. Rizzello L, Pompa PP. Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chemical Society Reviews. 2014;43(5):1501-18.
  23. Fayaz AM, Ao Z, Girilal M, Chen L, Xiao X, Kalaichelvan PT, et al. Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV-and HSV-transmitted infection. International journal of nanomedicine. 2012;7:5007.
  24. Gurunathan S, Han JW, Kwon DN, Kim JH. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale research letters. 2014;9(1):373.
  25. Cheraghi J, Hosseini E, Hoshmandfar R, Sahraei R, Farmany A. In vivo effect of silver nanoparticles on serum ALT, AST and ALP activity in male and female mice. Advances in Environmental Biology. 2013;1:116-23.
  26. Grin’ IV, Zvjaginceva TV. Vlijanie mazi na osnove tiotriazolina i nanochastic serebra na provospalitel’nye citokiny pri jeksperimental’nom termicheskom ozhoge. Mezhdunarodnyj studencheskij nauchnyj vestnik. 2015;2:207. [in Russian].
  27. Chekman IS. Nanofarmakolohiia. K.: Zadruha; 2011. 424 s. [in Ukrainian].
  28. Chekman IS, Ulberh ZR, Malanchuk VO. Nanonauka, nanobiolohiia, nanofarmatsiia. K.: Polihrafplius; 2012. 328 s. [in Ukrainian].
  29. Zatolokin VD, Moshkin AS. Vlijanie vodnyh dispersij oksidnyh nanostruktur metallov na techenie gnojnyh ran. Vestnik jeksperimental’noj i klinicheskoj hirurgii. 2010;3(1):44-51. [in Russian].
  30. Simonov PV. Eksperymentalne doslidzhennia farmakolohichnykh vlastyvostei nanochastynok midi ta yikh koniuhatu z tseftriaksonom [dysertatsiia]. Kharkiv: Nats. farm. un-t; 2016. 368 s. [in Ukrainian].
  31. Savchenko DS. Doslidzhennia protymikrobnykh vlastyvostei nanokompozytu Vysokodyspersnoho kremnezemu-klasteriv sribla, preparatu Syliks i sribla nitratu. Zaporozhskyi medytsynskyi zhurnal. 2012;(4):124-8. [in Ukrainian].
  32. Romero JL, Grande Burgos MJ, Pérez-Pulido R, Gálvez A, Lucas R. Resistance to antibiotics, biocides, preservatives and metals in bacteria isolated from seafoods: co-selection of strains resistant or tolerant to different classes of compounds. Frontiers in microbiology. 2017;8:1650.
  33. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances. 2009;27(1):76-83.
  34. Jaiswal S, McHale P, Duffy B. Preparation and rapid analysis of antibacterial silver, copper and zinc doped sol–gel surfaces. Colloids and Surfaces B: Biointerfaces. 2012;94:170-6.
  35. Han J, Fang P, Jiang W, Li L, Guo R. Ag-nanoparticle-loaded mesoporous silica: spontaneous formation of Ag nanoparticles and mesoporous silica SBA-15 by a one-pot strategy and their catalytic applications. Langmuir. 2012;28(10):4768-75.
  36. Nischala K, Rao TN, Hebalkar N. Silica-silver core-shell particles for antibacterial textile application. Colloids and Surfaces B: Biointerfaces. 2011;82(1):203-8.
  37. Suárez M, Esteban-Tejeda L, Malpartida F, Fernández A, Moya JS. Biocide activity of diatom-silver nanocomposite. Materials Letters. 2010;64(19):2122-5.
  38. Naumov MM, Zhukova LA, Ihlasova ZD. Polimernye biocidy – poliguanidiny v veterinarii. Kursk: Izd-vo Kursk. gos. s.-h. akad; 2010. 84 s. [in Russian].
  39. Voinceva II, Gembickij PA. Poliguanidiny – dezinfekcionnye sredstva i polifunkcional’nye dobavki v kompozicionnye materialy. M.: 2009. 304 s. [in Russian].
  40. Grigor’ev IA, Polienko JuF, Vojnov MA. rN-chuvstvitel’nye nitroksil’nye radikaly: strukturnye trebovanija, problemy molekuljarnogo dizajna i sinteticheskie podhody. Himija aromaticheskih, geterociklicheskih i prirodnyh soedinenij (NIOH SO RAN 1958-2008 gg.). Novosibirsk: 2009. s. 501-35. [in Russian].
  41. Zhou Z, Wei D, Lu Y. Polyhexamethylene guanidine hydrochloride shows bactericidal advantages over chlorhexidine digluconate against ESKAPE bacteria. Biotechnology and applied biochemistry. 2015;62(2):268-74.
  42. Walczak M, Richert A, Burkowska-But A. The effect of polyhexamethylene guanidine hydrochloride (PHMG) derivatives introduced into polylactide (PLA) on the activity of bacterial enzymes. Journal of industrial microbiology & biotechnology. 2014;41(11):1719-24.
  43. Gendaszewska D, Szuster L, Wyrębska Ł, Piotrowska M. Antimicrobial Activity of Monolayer and Multilayer Films Containing Polyhexamethylene Guanidine Sulphanilate. Fibres & Textiles in Eastern Europe. 2018;26(2):73-8.
  44. Lucas AD. Environmental fate of polyhexamethylene biguanide. Bulletin of environmental contamination and toxicology. 2012;88(3):322-5.
  45. Lysytsya AV. Research on the impact of polyhexamethyleneguanidine on the plant component of biocenoses. Biosyst Divers. 2017;25(2):89-95.
  46. Lysytsya A, Lyco S, Portuhaj O. The polyhexamethyleneguanidine stimulation of seeds growing and cell proliferation. Mater Sci Eng B. 2013;3(10):653-60.
  47. Mathurin YK, Koffi-Nevry R, Guéhi ST, Tano K, Oulé MK. Antimicrobial activities of polyhexamethylene guanidine hydrochloride–based disinfectant against fungi isolated from cocoa beans and reference strains of bacteria. Journal of food protection. 2012;75(6):1167-71.
  48. Lebedeva SN, Ochirov OS, Stel’mah SA, Grigor’eva MN, Zhamsaranova SD, Mognonov DM. Ranozazhivljajushhee dejstvie gidrogelja poligeksametilenguanidin gidrohlorida pri ozhogah. Acta Biomedica Scientifica. 2017;2(4):93-6. [in Russian].
  49. Lebedeva SN, Ochirov OS, Stel’mah SA, Grigor’eva MN, Zhamsaranova SD, Mognonov DM. Reparativnoe dejstvie gidrogelja poligeksametilenguanidin gidrohlorida. Bjulleten’ sibirskoj mediciny. 2018;17(1):112-20. [in Russian].
  50. Oule MK, Azinwi R, Bernier AM, Kablan T, Maupertuis AM, Mauler S, et al. Polyhexamethylene guanidine hydrochloride-based disinfectant: a novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections. Journal of medical microbiology. 2008;57(12):1523-8.
  51. Gilbert P, Moore LE. Cationic antiseptics: diversity of action under a common epithet. Journal of applied microbiology. 2005;99(4):703-15.
  52. Hong SB, Kim HJ, Huh JW, Do KH, Jang SJ, Song JS, et al. A cluster of lung injury associated with home humidifier use: clinical, radiological and pathological description of a new syndrome. Thorax. 2014;69(8):694-702.
  53. Moore BB, Hogaboam CM. Murine models of pulmonary fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2008;294(2):L152-60.
  54. Kim MS, Kim SH, Jeon D, Kim HY, Lee K. Changes in expression of cytokines in polyhexamethylene guanidine-induced lung fibrosis in mice: comparison of bleomycin-induced lung fibrosis. Toxicology. 2018;393:L185-92.
  55. Nowack B, Krug HF, Height M. 120 years of nanosilver history: implications for policy makers. Envir Sci Technol. 2011;45(4):1177-83.

Publication of the article:

«Bulletin of problems biology and medicine» Issue 1 Part 1 (148), 2019 year, 37-42 pages, index UDK 615–022.369–085–281

DOI: