Makeev V. F., Skalskyi V. R., Hunovskyi Ya. R.


About the author:

Makeev V. F., Skalskyi V. R., Hunovskyi Ya. R.



Type of article:

Scentific article


This article presents the results of the study of polymeric materials for the removable dentures basis of acoustic emission method to determine the strength and static crack resistance, to understand the nature of the processes of destruction, which occur under the action of a load in dental plastic. Strength characteristics were studied through research on the use of fracture during quasi-static tensile of samples from Ftoraks materials (JSC “CTOMA”, Ukraine) acrylic copolymer of hot polymerization; Villacryl H Plus (Zhermack, Italy) acrylic copolymer of hot polymerization; Vertex ThermoSens (Vertex Dental, Netherlands) non-dimensional plastic injection type. Experimental tests of strength samples were carried out on SVR-5 plant, which is intended for laboratory studies of strength and static crack resistance of materials, and thanks to its structural features it is possible to apply during their research the method of acoustic emission (AE). At the same time, we recorded the AE-information using the SKOP-8M system, using two measuring AE channels. In the post-processing mode, we constructed the tensile diagrams of the basis plastics. From their analysis, the Ftoraks material fragilely collapses, Villacryl – elastically flexible, and Vertex TermoSens characterized by significant viscosity during stretching. As a result, the relative elongation of all materials is significantly different (p<0,01): Ftoraks (4,17±0,44), Villacryl (15±1,15), Vertex ThermoSens (42,33±1,45). The most relative elongation had thermoplastic Vertex ThermoSens. So, although the strength of the thermoplastic Vertex ThermoSens turned out to be not the largest, but it takes 4 ... 4,5 times more time than for materials Ftoraks and Villacryl to achieve it. Also, a fracture in thermoplastics begins at the highest stresses, compared with other materials. The feature of the AE signals during the destruction of Vertex ThermoSens thermoplastics has greater energy signal strength, which characterizes viscose-brittle fracture in comparison with other plastics, and for signals corresponding to brittle fracture, the range of energy change is proportional to that for the Ftoraks material. Consequently, it can be assumed that during the stretching of the thermoplastic, despite the viscose character of the tension diagram, there was a high-energy viscose-fragile and fragile destruction. This assumption is confirmed by the analysis of sample breaks. Therefore, from the point of view of ensuring longer durability of the denture, we can talk about the most effective use of this basic material. According to the investigated parameters the worst material was Ftoraks, Villacryl occupies an intermediate position.


acoustic emission, acrylic plastics, thermoplastics


  1. Кlepach ММ. Pro nedoskonalist’ fizyko-mekhanichnykh vlastyvostei akrylovykh plastmas, shcho zastosovuiet’sya dlya vyhotovlennya znimnykh proteziv. Svit medytsyny ta biolohii. 2011;3:152-4. [in Ukrainian].
  2. Chuchulska B, Yankov S, Hristov I, Aleksandrov S. Thermoplast materials in the dental practice: a review. International Journal of Science and Research. 2017;6(12). Available from: plas tic_Materials_in_the_Dental_ Practice_A_Review
  3. Sylenko BYu, Dvornik VN. Fizyko-khimichni vlastyvosti bazysnoi plastmasy z modyfikovanoiu poverkhneiu. Aktual’ni problemy suchasnoi medytsyny. 2017;3(59):242-24. [in Ukrainian].
  4. Paliichuk ІV. Vplyv tekhnolohichnykh ta laboratornykh etapiv na yakist’ vyhotovlennya znimnykh plastynochnykh proteziv iz akrylovykh plastmas. Galyth’kyi likars’kyi visnyk. 1997;4(2):57-9. [in Ukrainian].
  5. Rozhko ММ. Kliniko–eksperemental’ne obgruntuvannya novykh metodiv likuvannya znimnymy konstrukthiyamu zubnykh proteziv [dysertatsiya]. Іvano-Frankivs’k, 1993. 322 s. [in Ukrainian].
  6. Кindii DD, Korol’ MF, Yarkovyi VV. Sravnitel’naya kharakteristika polimerizatsyi bazisnykh plastmass. Osnovni stomatolohichni zakhvoriuvannya: mater. dop. Vseukrains’koi nauk. prak. konf. likariv-stomatolohiv. Poltava, 1996. s. 210-1. [in Russiаn].
  7. Jadhav R, Bhide SV, Prabhudesai PS. Assessment of the impact strength of the denture base resin polymerized by various processing techniques. Indian Journal of Dental Research. 2013;24(1):19-25.
  8. Kanchanavasita W, Jongtamgpiti T, Wonglamsam A, Nagaviroj N. Flexural strength of three denture base materials in different curing procedures. M. Dent. J. 2017;37(3):273-80.
  9. Nejatian T, Sefat F, Johnson T. Impact of packing and processing technique on mechanical properties of acrylic denture base materials. Materials. 2015;8:2093-109. DOI: 10.3390/ma8052093
  10. Belokonova NA, Kostrov YaV, Zholudev SE. Vliyaniye sostava bazisnykh stomatolohicheskikh polimerov na ikh termomekhanicheskiye svoistva i ustoichivost’ k vneshnim sredam. Uspekhi sovremennogo estestvoznaniya. 2016;5:9-13. [in Russiаn].
  11. Strelkovsyi KM, Vlasenko AZ, Filipchik YS. Zubotekhnichne materialoznavstvo. К.: Zdorov’ya; 2004. s. 92-132. [in Ukrainian].
  12. Jagger DC, Harrison A, Jandt KD. The reinforcement of dentures. J. Oral. Rehabil. 1999;26:185-94.
  13. Gad MM, Fouda SM, Al-Harbi FA. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. International Journal of Nanomedicine. 2017;12:3801-12.
  14. John J, Gangadhar SA, Shah I. Flexural strength of heat-polymerized polymethyl methacrylate denture resin reinforced with glass, aramid, or nylon fibers. J. Prosthet. Dent. 2001;86:424-7.
  15. Waltimo T, Tanner J, Vallittu P. Adherence of Candida Albicans to the surface of polymethylmethacrylate glass fiber composite used in dentures. Int. J. Prosthodont. 1999;12(1):83-6.
  16. Yoshida K, Takahashi Y, Shimizu H. Effect of embedded metal reinforcements and their location on the fracture resistance of acrylic resin complete dentures. J. Prosthodont. 2011;20(5):366-71.
  17. Hatamleh MM, Maryan CJ, Silikas N. Effect of net fiber reinforcement surface treatment on soft denture liner retention and longevity. J. Prosthodont. 2010;19(4):258-62.
  18. Marei MK. Reinforcement of denture base resin with glass fillers. J. Prosthodont. 1999;8(1):18-26.
  19. Zortuk M, Kılıc K, Uzun G. The effect of different fiber concentrations on the surface roughness of provisional crown and fixed partial denture resin. Eur. J. Dent. 2008;2(3):185-90.
  20. Uzun G, Hersek N, Tincer T. Effect of five woven fiber reinforcements on the impact and transverse strength of a denture base resin. J. Prosthet. Dent. 1999;81(5):616-20.
  21. Takahashi Y, Yoshida K, Shimizu H. Effect of location of glass fiber-reinforced composite reinforcement on the flexural properties of a maxillary complete denture in vitro. Acta Odontol. Scand. 2011;69(4):215-21.
  22. Ryakhovskii AN, Gryazeva NA. Metod ukrepleniya bazisov s’emnykh plastinochykh protezov setkoi iz armidnykh nitei i klinicheskaya othenka ego efektivnosti. Institut stomatologii. 2002;2:28-9. [in Russiаn].
  23. Flis PS, Bannykh TM. Tekhnika vyhotovlennya znimnykh proteziv. К.: Меdytsyna; 2008. 255 s. [in Ukrainian].
  24. Alhareb AO, Akil H. Md, Ahmad ZA. PMMA denture base composites reinforced by nitrile rubber and ceramic fillers. Polymers & Polymer Composites. 2016;24(1):71-80.
  25. Alapati S, Hamza T, Wee AG. The fracture toughness of denture base material reinforced with different concentrations of POSS. Journal of macromolecular science. Part A: Pure and Applied Chemistry. 2004;A41(8):897-906.
  26. Spasojević P, Panić V, Šešlija S. Poly(methyl methacrylate) denture base materials modified with ditetrahydrofurfuryl itaconate: Significant applicative properties. J. Serb. Chem. Soc. 2015;80(9):1177-92.
  27. Al-Mulla MAS, Murphy WM, Huggett R. Effect of water and artificial saliva on mechanical properties of some denture-base materials. Dental Materials. 1989;5:399-402.
  28. Memarian M, Shayestehmajd M. The effect of chemical and mechanical treatment of the denture base resin surface on the shear bond strength of denture repairs. Rev. Clin. Pesq. Odontol. 2009;5(1):11-7.
  29. Shinawi LA. The effect of denture cleansers on the hardness of denture base resins, polyamides and copolymers. EC Dental Science. 2017;10(4):110-9.
  30. Hamanaka I, Takahashi Y, Shimizu H. Mechanical properties of injection-molded thermoplastic denture base resins. Acta Odontologica Scandinavica. 2011;69:75-9.
  31. Hamanaka I, Iwamoto M, Lassila LVJ. Wear resistance of injection-molded the thermoplastic denture base resins. Acta Biomater. Odontol. Scand. 2016;2(1):31-7. DOI: 10.3109/23337931.2015.1135747
  32. Takabayashi Y. Characteristics of denture thermoplastic resins for non-metal clasp dentures. Dental Materials Journal. 2010;29(4):353-61.
  33. Arafa KAO. Effect of different denture base materials and changed mouth temperature on dimensional stability of complete dentures. International Journal of Dentistry. 2016;4:1-5. Available from:
  34. Kovalenko OI. Kliniko-laboratornoye obosnovaniye primeneniya bazisnoi plastmassy na osnove neilona [avtoreferat]. MGMSU. М.; 2011. 24 s. [in Russiаn].
  35. Ron OS. Kliniko-laboratornoye i funktsional’noe obosnovaniye primeneniya bazisnykh materialov s’emnykh protezov [avtoreferat]. RMANPO. М.; 2017. 27 s. [in Russiаn].
  36. Tregubov ID. Sravnitel’naya kharakteristika bazisnykh materialov pri izgotovlenii shyniruiushchikh konstruktsii. Nauchnyi al’manakh. 2017;33(29):372-4. [in Russiаn].
  37. Hemmati MA, Vafee F, Allahbakhshi H. Water sorption and flexural strength of thermoplastic and conven tional heat-polymerized acrylic resins. Tehran University of Medical Sciences. 2015;12(7):478-84.
  38. El-Khodary NM, El-Shabrawy SM, El-Naihoum WA. Laboratory evaluation of newly formulated thermoplastic resin complete denture base materials. International Journal of Science and Research. 2016;5(3):1815-21.

Publication of the article:

«Bulletin of problems biology and medicine» Issue 1 Part 1 (148), 2019 year, 225-232 pages, index UDK 616.314-089.29-633-085.462-073.432.1