Biletskiy O. V., Stupnitskiy M. A.

INVESTIGATION OF THE EFFECTIVENESS OF MAGNESIUM SULFATE USE IN THE COMPOSITION OF FLUID RESUSCITATION FOR THE PREVENTION OF CELLULAR MEMBRANE DAMAGE IN PATIENTS SUFFERING FROM POLYTRAUMA UNDER CONDITIONS OF HYPOVOLEMIC TRAUMATIC SHOCK AND ISCHEMIA


About the author:

Biletskiy O. V., Stupnitskiy M. A.

Heading:

CLINICAL AND EXPERIMENTAL MEDICINE

Type of article:

Scentific article

Annotation:

In 24 patients in the state of traumatic shock, against the background of polytrauma, the effectiveness of anti-shock fluid resuscitation at an early hospital stage studied. A comparative study of the effect of intensive care, recommended by the Protocols of the Ministry of Health of Ukraine, and adding to its composition hypertonic solution of magnesium sulfate in a normal saline conducted. The use of magnesium sulfate is justified by accelerating the recovery of circulating blood volume with the simultaneous elimination of tachycardia and the improvement of cardiac contraction mechanics, as well as the limitation of cell membrane damage by limiting ionized calcium ingestion to them, followed by a decrease in the intensity of free radical oxidation processes. Two groups of study created for 12 patients in each group: the main use of infusion of magnesium sulfate and control with a «standard» resuscitation. Changes in the parameters of central and peripheral hemodynamics at the stages of rendering assistance, carboxylated hemoglobin and malonic dialdehyde in the blood studied. It discovered that the use of magnesium sulfate as a fluid resuscitation facilitated a significant acceleration of the improvement of the central and peripheral hemodynamics, as well as the reduction of carboxylated hemoglobin and malonic dialdehyde production in the body during the first 24 hours after the surgical operation.

Tags:

traumatic shock, ischemia / reperfusion, fluid resuscitation, hemodynamics, free radical damage, magnesium sulfate, carbon monoxide, malonic dialdehyde.

Bibliography:

  1. Cannon JW. Hemorrhagic Shock. New England Journal of Medicine. 2018 Jan 25;378(4):370-9. Available from: http://www.nejm.org/doi/ pdf/10.1056/NEJMra1705649
  2.  Kang WS, Yeom JW, Jo YG, Kim JC. Pathophysiology of Hemorrhagic Shock. Journal of Acute Care Surgery. 2016 Apr;6(1):2-6. Available from: https://doi.org/10.17479/jacs.2016.6.1.2 [in Korean].
  3.  Premaratne S, Amaratunga DT, Mensah FE, McNamara JJ. Significance of Oxygen Free Radicals in the Pathophysiology of Hemorrhagic Shock – A Protocol. International Journal of Surgery Protocols. 2018;9:15-9. Available from: https://www.ijsprotocols.com/article/S2468- 3574(17)30036-0/pdf
  4. Nakayama H, Otsu K. Mitochondrial DNA as an Inflammatory Mediator in Cardiovascular Diseases. Biochemical Journal. 2018 Mar 6;475:839- 52. Available from: https://doi.org/10.1042/BCJ20170714
  5.  Wenceslau CF, McCarthy CG, Szasz T, Goulopoulou S, Webb RC. Mitochondrial N-Formyl Peptides Induce Cardiovascular Collapse and Sepsis-Like Syndrome. American Journal of Physiology: Heart & Circulation Physiology. 2015 Apr 01;308(7):H768-77. DOI: 10.1152/ajpheart.00779.2014
  6.  Wenceslau CF, McCarthy CG, Goulopoulou S, Szasz T, NeSmith EG, Webb RC. Mitochondrial-Derived N-Formyl Peptides: Novel Links between Trauma, Vascular Collapse and Sepsis. Medical Hypotheses. 2013 Oct;81(4):532-5. DOI: 10.1016/j.mehy.2013.06.026
  7.  Zhang Q, Raoof M, Chen Yu, Sumi Yu, Sursal T, Junger W, et al. Circulating Mitochondrial DAMPs Cause Inflammatory Responses to Injury. Nature. 2010 Mar 04;464(7285):104-7. DOI: 10.1038/nature08780
  8. Muntean DM, Sturza A, Danila MD, Borza C, Diucu OM, Mornos C. The Role of Mitochondrial Reactive Oxygen Species in Cardiovascular Injury and Protective Strategies. Hindawi: Oxidative Medicine and Cellular Longevity. 2016. 2016: Article ID 8254942. Available from: http://dx.doi. org/10.1155/2016/8254942
  9.  Li X, Fang P, Mai J, Choi ET, Wang H, Feng X. Targeting Mitochondrial Reactive Oxygen Species as Novel Therapy for Inflammatory Diseases and Cancers. Journal of Hematology & Oncology. 2013;6:19. Available from: https://doi.org/10.1186/1756-8722-6-19
  10.  Schwalfenberg GK, Genuis SJ. The Importance of Magnesium in Clinical Healthcare. Hindawi: Scientifica. 2017. 2017: Article ID 4179326. Available from: https://doi.org/10.1155/2017/4179326
  11.  Sampaio FA, Feitosa MM, Sales CH, Costa e Silva DM, Clímaco Cruz KJ, Oliveira FE, et al. Influence of Magnesium on Biochemical Parameters of Iron and Oxidative Stress in Patients with Type 2 Diabetes. Nutricion Hospitalaria. 2014;30(3):570-6. DOI: 10.3305/nh.2014.30.3.7333
  12. Günther T. Na+/Mg2+Antiport in Non-Erythrocyte Vertebrate Cells. Magnesium Research. 2007;20(2):89-99. DOI: 10.1684/mrh.2007.0100
  13. Biletskiy OV, Kursov SV. Zastosuvannya magniyu sulfatu z metoyu priskorennya vivedennya postrazhdalih iz stanu gipovolemichnogo travmatichnogo shoku v umovah reanimatsiynoyi zali ta operatsiynoyi. Bil, znebolyuvannya ta intensivna terapiya. 2018;3(84):30-5. [in Ukrainian].
  14. Hu T, Xu H, Wang Ch, Qin H, An Z. Magnesium Enhances the Chondrogenic Differentiation of Mesenchymal Stem Cells by Inhibiting Activated Macrophage-Induced Inflammation. Scientific Reports. 2018;8:3406. DOI: 10.1038/s41598-018-21783-2
  15.  Abad С, Vargas FR, Zoltan T, Proverbio T, Pinero S, Proverbio F, et al. Magnesium Sulfate Affords Protection against Oxidative Damage during Severe Preeclampsia. Placenta. 2015;36:179-85. Available from: http://dx.doi.org/10.1016/j.placenta.2014.11.008
  16.  Muroi C, Burkhardt JK, Hugelshofer M, Seule M, Mishima K, Keller E. Magnesium and the Inflammatory Response: Potential Pathophysiological Implications in the Management of Patients with Aneurysmal Subarachnoid Hemorrhage? Magnesium Research. 2012;25(2):64-71. DOI: 10.1684/mrh.2012.0314
  17.  Beletskiy AV. Giperproduktsiya karboksigemoglobina kak sledstvie gipoksii i membrannyih povrezhdeniy. Harkivska hirurgichna shkola. 2016;6(81):89-92. Available from: http://nbuv.gov.ua/UJRN/Khkhsh_2016_6_21 [in Russian].
  18. Kursov SV. Monooksid ugleroda: fiziologicheskoe znachenie i toksikologiya. Meditsina nevidkladnih staniv. 2015;6(69):9-16. [in Russian].
  19. Wu L, Wang R. Carbon Monoxide: Endogenous Production, Physiological Functions, and Pharmacological Applications. Pharmacological Reviews. 2005;57(4):585-630.
  20. Bouboulis G, Bonatsos VG, Katsarou AI, Karameris A, Galanos A, Zacharioudaki A, et al. Experimental Hemorrhagic Shock Protocol in Swine Models: The Effects of 21-Aminosteroid on the Small Intestine. Current Therapeutic Research. 2018;88(1):18-25. Available from: https://doi. org/10.1016/j.curtheres.2018.03.003
  21. Yang J, Yin HS, Cao YJ, Jiang ZA, Li YJ, Song MC, et al. Arctigenin Attenuates Ischemia/Reperfusion Induced Ventricular Arrhythmias by Decreasing Oxidative Stress in Rats. Cellular Physiology & Biochemistry. 2018;49(2):728-42. Available from: https://doi.org/10.1159/000493038
  22.  Chen G, You G, Wang Y, Lu M, Cheng W, Yang J, et al. Effects of Synthetic Colloids on Oxidative Stress and Inflammatory Response in Hemorrhagic Shock: Comparison of Hydroxyethyl Starch 130/0.4, Hydroxyethyl Starch 200/0.5, and Succinylated Gelatin. Critical Care. 2013 Jul 12;17(4):R141. DOI: 10.1186/cc12820
  23. Kondrahin IP. Opredelenie malonovogo dialdegida v krovi; Biologiya. Klinicheskaya i laboratornaya diagnostika [Internet] Myzooplanet.ru [2004]. Available from: http://myzooplanet.ru/laboratornaya-diagnostika-klinicheskaya/opredelenie-malonovogo-dialdepscha-9430.html [in Russian].
  24. Kursov SV, Nikonov VV, Beletskiy AV, Lizogub KI. Kolichestvennyie izmeneniya perfuzionnogo indeksa pri razlichnyih patologicheskih sostoyaniyah. Meditsina nevidkladnih staniv. 2018;1(88):99-102. [in Russian].
  25. Ertan T, Soran A, Kocer B, Cengiz O. Oxidative Stress in Hemorrhagic Shock: Prospective Clinical Study. Nagoya Medical Journal. 2001;45:43-54.

Publication of the article:

«Bulletin of problems biology and medicine» Issue 1 Part 2 (149), 2019 year, 120-125 pages, index UDK 616-001.36-005.1/4-008.7-03-06-08-092.6/18-098

DOI: