Kholodkova O. L.

PLATELETS: BIOLOGICAL PROPERTIES AND CLINICAL POTENTIAL


About the author:

Kholodkova O. L.

Heading:

LITERATURE REVIEWS

Type of article:

Scentific article

Annotation:

The key feature of platelets is the absence of the nucleus what makes them immunologically safe for use in the allogenic variant. However, platelets contain a large number of biologically active compounds that are involved in a wide range of hemostasis processes, activation of neoangiogenesis, stimulation of regenerative properties of tissues, support of homeostasis, and others. After aggregation, the platelets begin to realize the contents of the granules, and this process most actively lasts for the first hour, and the synthesis of cytokines continues for at least 7 days. Platelet-rich plasma (PRP) began to be manufactured for clinical purposes in the 1970s. It is a platelet concentrate in a small amount of plasma, with 5 times increase of the platelet concentration, but the clinical significance has a PRP with a platelet content of not less than 1x106 / ml. Actually, not only platelets, but also a small number of red blood cells and leukocytes, including progenitor cells of varying degrees of maturity, are present in the PRP. Some pathological conditions of an organism influence quantitative and qualitative characteristics of platelets and limit the possibility of their use in the autologous version. Our studies have revealed the ultra-microscopic features of platelets in rats with induced toxic hepatitis. Thus, there was a change in the ratio of activated and unactivated platelets to the increase of the latter, significant fluctuations of the plate aggregation index within the experimental group, a significant decrease in the density of alpha and delta granules. The release of cytokines, chemokines and growth factors from platelets stimulates the activation and proliferation of regenerative cells: fibroblasts, neutrophils, monocytes, smooth myocytes and mesenchymal stem cells. Of interest is the fact that the concentration of growth factors in PRP almost 8 times exceeds their content in the whole blood. In a series of studies we performed on rats demonstrated a significant improvement of morpho-functional state of the liver in animals with CCl4-induced chronic hepatitis after PRP administration. It was noted that the introduction of PRP leads to normalization of blood biochemical characteristics, revealed the amount of connective tissue and speed up the process of regeneration of liver tissue. We also demonstrated the application of PRP under the experimental liver cirrhosis in rats induces active regeneration, normalization of liver size, rebuilt lobular organization, the newly formed blood vessels, increase content of PAS-positive substances. The researchers found the need for direct contact of the platelets and hepatocytes to implement proliferative effect because it triggers signaling to activate the growth factors. To correct degenerative changes in the intervertebral discs of the spine we carried out experimental therapy by PRP that reduce the number of lesions fibronecrosis, the degree of desorganisation of collagen fibers, increase the height of the fibrous ring and the vertebral epiphysis. Thus, these data indicate that currently experimental studies show high clinical potential of platelets, which is not substancially involved in the clinic. The uniqueness of these cells is due, above all, the ability to use them both autologous and in heterogeneous form, the use of products with platelets and cell mixtures in various biotechnological options also availability and relatively simple preparation for clinical use.

Tags:

platelets, pathological processes correction, platelet-rich plasma

Bibliography:

  1. Marx RE. Platelet-rich plasma (PRP): what is and what is not PRP? Implant Dentistry. 2001;10:225-8.
  2. Marx R, Carlson E, Eichstaedt R, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma: Growth factor enchancement for bone grafts. Oral Surgery, Oral Medicine, Oral Pathology. 1998;85(6):6438-46.
  3. Weyrich AS, Schwertz H, Kraiss LW, Zimmerman GA. Protein synthesis by platelets: historical and new perspectives. Journal of thrombosis and haemostasis. 2009;7(2):241-6.
  4. Bendinelli P, Mateucci E, Dogliotti G, Corsi MM, Banfi G, Maroni P, et al. Molecular basis of anti-inflammatory action of platelet-rich plasms on human chondrocytes: mechanisms of NF-kB inhibition via HGF. J. Cell Physiol. 2010;225:757-66.
  5. Mazzocca AD, McCarthy BR, Intravia J, Beitzel K, Apostolakos J, Cote MP, et al. In vitro evaluation of the anti-inflammatory effects of platelet-rich plasma, ketorolac, and methylprednisolone. Arthroscopy. 2013;29:675-83.
  6. Rendu F, Brohard-Bohn B. The platelet release reaction: granules’ constituents, secretion and function. Platelets. 2001;12(5):261-73.
  7. Flaumenhaft R. Molecular basis of platelet granule secretion. Arteriosclerosis, thrombosis, and vascular biology. 2003;23(7):1152-60.
  8. Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA. Neutrophil rolling, arrest and transmigration across activated, surfaceadherent platelets via sequential action of P-selectin and the β2-integrin CD11b/CD18. Blood. 1996;88(1):146-57.
  9. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nature reviews drug discovery. 2007;6(4):273-86.
  10. Anitua E, Andia I, Ardanza B, Nurden P, Nurden AT. Autologous platelets as a source of proteins for healing and tissue regeneration. Thrombosis and haemostasis. 2004;91(1):4-15.
  11. Thon JN, Italiano E. Platelets: production, morphology and ultrastructure. Handbook of experimental pharmacology. 2012;210:3-22.
  12. Thushara RM, Hemshekhar M, Kemparaju Basappa K, Rangappa KS, Girish KS. Biologicals, platelet apoptosis and human diseases: an outlook. Crit. Rev. Oncol. Hematol. 2015;93:149-58.
  13. Nachman RL, Rafii S. Platelets, petechiae, and preservation of the vascular wall. The New England Journal of medicine. 2008;359(12):1261-70.
  14. Senzel L, Gnatenko DV, Bahou WF. The platelet proteome. Curr. Opin. Hematol. 2009;5:329-33.
  15. Mautner K, Malanga G, Smith J, Shiple B, Ibrahim V, Sampson S, et al. Call for a standard classification system for future biologic research: the rationale for new PRP nomenclature. PMR. 2015;7:53-9.
  16. Ghoshal K, Bhattacharyya M. Overview of platelet physiology: its hemostatic and nonhemostatic role in disease pathogenesis. The Scientific World Journal. 2014;ID 781857.
  17. Kauskot A, Hoylaerts MF. Platelet receptors. Handbook of experimental pharmacology. 2012;210:23-57.
  18. Qureshi AH, Chaoji V, Maiguel D, Faridi MH, Barth CJ, Salem SM, et al. Proteomic and phosphor-proteomic profile of human platelets in basal, resting state: insights into integrin signaling. PLoS One. 2009;4(10):ID e7627.
  19. Parguina AF, Rosa I, Garcia A. Proteomics applied to the study of platelet-related diseases: aiding the discovery of novel platelet biomarkers and drug targets. Journal of proteomics. 2012;76:275-86.
  20. Macaulay IC, Carr P, Gusnanto A, Ouwehand WH, Fitzgerald D, Watkins NA. Platelet genomics and proteomics in human health and disease. J. Clin. Invest. 2005;115:3370-7.
  21. Speth C, Rambacha G, Würzner R, Lass-Flörl C, Kozarcaninb H, Hamad OA. Complement and platelets: mutual interference in the immune network. Mol. Immunol. 2015;67:108-18.
  22. Jurk K, Kehrel BE. Platelets: physiology and biochemistry. Semin. Thromb. Hemost. 2005;31:381-92.
  23. Cole B. Platelet-rich plasma: where are we now and where are we going? Sports Health. 2010;2(3):203-10.
  24. Mei-Dan O, Laver L, Nyska M, Mann G. Platelet-rich plasma – a new biotechnology for treatment of sports injuries. Harefuah. 2011;150(5):453-7.
  25. Brass L. Understanding and evaluating platelet function. Hematology. The Education Program of the American Society of Hematology Education Program. 2010. p. 387-96.
  26. Martinez CE, Smith PC, Palma Alvarado VA. The influence of platelet-derived products on angiogenesis and tissue repai. Front. Physiol. 2015;6:290.
  27. Furman MI, Liu L, Benoit SE, Becker RC, Barnard MR, Michelson AD. The cleaved peptide of the thrombin receptor is a strong platelet agonist. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(6):3082-7.
  28. Liu Y, Kalen A, Risto O, Wahlstrom O. Fibroblast proliferation due to exposure to a platelet concentrate in vitro is pH dependent. Wound repair and regeneration. 2002;10(5):336-40.
  29. Amable PR, Carias RB, Texeira MV, Pacheco IC, Amaral RJ, Granjeiro JM, et al. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem cell res. Ther. 2013;4,67.10.1186/scrt218.
  30. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiological reviews. 2003;83(3):835-70.
  31. Foster TE, Puskas BL, Mandelbaum BR, Gerhardt MB, Rodeo SA. Platelet-rich plasma: from basic science to clinical applications. Am. J. Sports Med. 2009;37(11):2259-72.
  32. Sharathkumar AA, Shapiro A. Platelet function disorders. Treatment for hemophilia. 2008;19:134-40.
  33. Harrison P, Mackie I, Mumford A. Guidelines for laboratory investigation of heritable disorders of platelet function. British J. of hematology. 2014;155(1):30-44.
  34. Kholodkova OL. Teoretychne obgruntuvannya klichnogo zastosuvannya zbagachenoi trombozitami plazmi. Suchasni naukovi doslidgennya predstavnykiv medychnoi nauky – progress mediciny maibutnyogo: Zbirnyk naukovyh robit uchasnykiv mizhnarodnoi naukovo-praktychnoi konferencii. Kyiv; 2018. s. 16-7. [in Ukrainian].
  35. Rosove MH, Frank JL, Harwig SS. Plasma β-thromboglobulin, platelet factor 4, fibrinopeptide A, and otherhemostatic functions during improved, short-term glycemic control in diabetes mellitus. Diabetes Care. 1984;7(2):174-9.
  36. Lucerna M, Zernecke A, de Nooijer R, de Jager SC, Bot I, van der Lans C, et al. Vascular endothelial growth factor-A induces plaque expansion in ApoE knock-out mice by promoting de novo leukocyte recruitment. Blood. 2007;109(1):122-9.
  37. Eppley BL, Woodell JE, Higgins J. Platelet quantification and growth factor analysis from platelet-rich plasma: implications for wound healing. Plastic and reconstructive surgery. 2004;114(6):1502-8.
  38. Li X, Hou J, Wu B, Chen T, Luo A. Effects of platelet-rich plasma and cell co-culture on angiogenesis in human dental pulp stem cells and endothelial progenitor cells. J. Endod. 2014;40:1810-4.
  39. Anitua E, Pelacho B, Prado R, Aguerre JJ, Sanches M, Padilla S. Infiltration of plasma rich in growth factors anhances in vivo angiogenesis and improves reperfusion and tissue remodeling after severe hind limb ischemia. J. Control Release. 2015;28:31-9.
  40. Holodkova OL, Gorchag DM. Mozhlyvosti vykorystannya zbagachenoi trombocitami plasmy pry eksperymentalniy terapii toksychnogo urazhennya pechinky. Ukrainskiy morfologichnyi almanah. 2013;11(3):63-5. [in Ukrainian].
  41. Kholodkova OL, Romak OI. Experimental grounds of using platelet-rich plasma to stimulate the liver regeneration in case of chronic hepatitis. Deutscher Wissenschaftsherold. 2016;2:56-9.
  42. Gorchag DM, Kholodkova OL, Perepeliuk MM. Pathogenesis of the hepatic fibrosis and possibilities of its correction. Journal of Education, Health and Sport. 2016;6(10):586-600.
  43. Zaporozhan VM, Holodkova OL, Yuzvak OM, Neskoromna NV, Romak OI. Sposib vidtvorennya tkanyny pechinky v eksperymenti pry cyrozi. Patent Ukrayiny na vynahid № 111669 С2 MPK G09B 23/28 (2006.01). Opubl. 25.05.2016, Byul. 10:1-4. [in Ukrainian].
  44. Matsuo R, Ohkohchi N, Murata S, Ikeda O, Nakano Y, Watanabe M, et al. Platelets strongly induce hepatocyte proliferation with IGF-1 and HGF in vitro. J. Surg. Res. 2008;145:279-86.
  45. Holodkova OL, Tsyurupa OV, Sadovskaya YuA, Goryuk IA. Morfologicheskiye proyavleniya degenerativno-distroficheskih porazheniy pozvonochnika v eksperimente i posle korrekcii. Molodyy vchenyy. 2016;7(34):291-5. [in Russiаn].
  46. Zhou B, Ren J, Ding C, Wu Y, Hu D, Gu G. Rapidly in situ forming platelet- rich plasma gel enhances angiogenic responses and augments early wound healing after open abdomen. Gastroenterol. Res. Pract. 2013:926764. 10.1155/2013/926764.
  47. Kang J, Hur J, Kang JA, Yun JY, Choi JI, Ko SB. Activated platelet supernatant can augment the angiogenic potential of human peripheral blood stem cells mobilized from bone marrow by G-CSF. J. Mol. Cell. Cardiol. 2014;75:64-75.
  48. Lyras DN, Kazakos K, Verettas D, Polychronidis A, Tryfonidis M, Botaitis S, et al. The influence of platelet-rich plasma on angiogenesis during the early phase of tendon healing. Foot Ankle Int. 2009;30:1101-6.
  49. Mammoto T, Jiang A, Jiang E, Mammoto A. Platelet-rich plasma extract promotes angiogenesis through the angiopoetin1-Tie2 pathway. Microvasc. Res. 2013;89:15-24.
  50. Cohen S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the newborn animal. Journal of Biological chemistry. 1962;237:155-62.
  51. Hosgood G. Wound healing: the role of platelet-derived groeth factor and transforming growth factor beta. Veterinary surgery. 1993;22(6):490-5.
  52. Antoniades HN. Human platelet-derived growth factor: structure and function. Federation Proceed. 1983;42(9):2630-4.
  53. Floege J. A new look at platelet-derived growth factor in renal disease. J. of American Society of Nephrology. 2008;19(1):12-23.
  54. Bir SC, Esaki J, Marui A. Angiogenic properties of sustained release platelet-rich plasma: characterization in-vitro and in the ischemic hind limb of the mouse. J. of vascular surgery. 2009;50(4):870-9.
  55. Mishra A, Pavelko T. Treatment of chronic elbow tendinosis with buffered platelet-rich plasma. Am. J. of Sports Medicine. 2006;34(11):1774-8.
  56. Frechette JP, Martineau I, Cagnon G. Platelet-rich plasmas: growth factor content and roles in wound healing. J. of Dental research. 2005;84(5):434-9.
  57. Weibrich G, Kleis WK, Hafner G, Hitzler WE. Growth factor levels in platelet-rich plasma and correlation with donor age, sex and platelet count. J. of Craniomaxillofacial Surgery. 2002;30(2):97-102.
  58. Pierce GF, Mustoe TA, Lingelbach J, Masakowski VR, Griffin GL, Senior RM, et al. Transforming growth factor β reverses the glucocorticoid-induced wound healing deficit in rats. Possible regulation in macrophages by platelet-derived growth factor. Proceedings of the National Academy of Sciences of the United States of America. 1989;86(7):2229-33.
  59. Rechler MM, Nissley SP. Insulin-like growth factors. In: Handbook of experimental Pharm: Peptide growth factors and their receptors. 1990. Eds.: Sporn MB, Roberts AB. p. 263-6.
  60. Spencer EM, Tokunaga A, Hunt TK. Insulin-like growth factor binding protein-3 is present in the α-granules of platelets. Endocrinology. 1993;132(3):996-1001.
  61. Tammella T, Enholm B, Alitalo K, Paavonen K. The biology of vascular endothelial growth factors. Cardiovascular Risearch. 2005;65(3):550-63.
  62. Lee S, Chen TT, Barber CL, Gordan MC. Autocrine VEGF signaling is required for vascular homeostasis. Cell. 2007;130(4):691-703.
  63. Carmeliet P, Jain R. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298-307.
  64. Olofsson B, Jeltsch M, Eriksson U, Alitalo K. Current biology of VEGF-B and VEGF-C. Current opinion in biotechnology. 1999;10(6):528-35.
  65. Partanen TA, Arola J, Saaristo A, Jussila L, Ora A, Miettinen M, et al. VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. FASEB journal. 2000;14(13):2087-96.
  66. Klagsbrun M, Takashima S, Mamluk R. The role of neuropilin in vascular and tumor biology. Advances in experimental medicine and biology. 2002;515:33-48.
  67. Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF, et al. Circulating angiogenic factors and the risk of preeclampsia. The New England journal of medicine. 2004;350(7):672-83.
  68. Mohle R, Green D, Moore MA, Nachman RL, Rafii SC. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megacaryocytes and platelets. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(2):663-8.
  69. Cenni E, Peruti F, Baldini N. In vitro models for the evaluation of angiogenic potential in bone engineering. Acta Pharmacol. Cin. 2011;32:21-30.
  70. Klement GL, Shai E, Varon D. The role of platelets in angiogenesis. In: Platelets. Eds.: Michelson AD, Elsevier, San-Diego, California. 2013. p. 487-502.
  71. McCarrel T, Fortier L. Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. Journal of orthopedic research. 2009;27(8):1033-42.
  72. Ahmerov RR. Regenerativnaya medicina na osnove autologichnoi plasmy. Tehnologiya Plasmalifting™.: Littera; 2014. 149 s. [in Russiаn].
  73. Gainutdinova EG, Gabidullina RI, GaleevAA, Shaihetdinova AT, Mihailova ON, Marapov DI, i dr. Vliyaniye bogatoi trombocitami plasmy na process vasculyarisacii shva na matke posle operacii kesareva secheniya. Practicheskaya medicina. 2017;7(17):46-50. [in Russiаn].
  74. Tolstov DA, Bogdan VG. Trombocitarnyye koncentraty: klassifikaciya, tehnologii polucheniya, biologicheskiye effekty. Minsk: BGMU; 2012. 196 s. [in Russiаn].
  75. Popov PA, Popov YuP, Magomedova LA. Lecheniye oslozhneniy posle operaciy na organah bryushnoy polosti s ispolzovaniyem obogashchennoy trombocitami plasmy. Hirurg. 2014;6:4-11. [in Russiаn].
  76. Tonti GA, Manello F. From bone marrow to therapeutic applications: different behavior and genetic/epigenetic stability during mesenchymal stem cell expansion in autologous and foetal bovine sera? Int. J. Rev. 2008;52:1023-32.
  77. Pavlenko OV, Bida RYu. Plasma zbagachena trombocitamy: vіd fundamentalnoi nauky do klinichnoi praktyky. Visnyk problem biologii i mediciny. 2016;2,1(128):241-4. [in Ukrainian].
  78. Ben Azuna N, Jenhani F, Regava Z, Berraeis L, Ben Othman T, Ducrocq E. Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow: comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum. Stem Cell Res. Ther. 2012;14,6.10.1186/scrt97.
  79. Maslova O, Ostrovska G. Modyfikovani umovy kultyvuvannya yak sposib vplyvu na morfofunkcionalni vlastyvosti mesenhimalnyh klityn pupoviny lyudyny. Visnuk Kyivskogo nac. univ. im. T. Shevchenka. Seriya: Biologiya. 2014;1(66):33-7. [in Ukrainian].

Publication of the article:

«Bulletin of problems biology and medicine» Issue 2 (144), 2018 year, 73-78 pages, index UDK 611.018.52.

DOI: