Mukvych V. V., Liashenko V. P., Lukashov S. M.

AGE-RELATED MODULATION OF BIOELECTRIC ACTIVITY OF THE ERGOTROPIC ZONE OF THE HYPOTHALAMUS IN MALE RATS


About the author:

Mukvych V. V., Liashenko V. P., Lukashov S. M.

Heading:

CLINICAL AND EXPERIMENTAL MEDICINE

Type of article:

Scentific article

Annotation:

The age-related modulation of bioelectric activity of the ergotropic zone of the hypothalamus in male rats has been studied. Experiments were carried out on non-linear white outbred male rats of juvenile puberty period, young age of the reproductive period, mature age of the reproductive period, presenile age of the pronounced senile changes period. Animals of these groups were under standard care conditions, had normal diet and free access to drinking water. Our studies have shown that age-related changes of variation of normalized capacities of high-frequency and low-frequency components of Electric Hypothalamus Test (EGtG) occur in the ergotropic zone of the rat hypothalamus. Juvenile male rats, unlike young male rats, who have been characterized by a predominance of high-frequency oscillations (alpha and beta activity), have shown an almost equal distribution between the mentioned EGtG components. Instead, with age the dynamics of the EGtG components distribution becomes quite the opposite with peculiar predominance of low-frequency oscillations. In particular, this applies to adult rats. Despite the rather radical changes in the predominance of this or thе EGtG component in the ergotropic zone of the hypothalamus in rats of previous age groups, variation in the distribution of spectral capacities of male rats of the presenile age stabilizesand becomes almost identical with that of the juvenile male rats. We observed the corresponding distribution of highfrequency and low-frequency oscillations in juvenile, young and mature male rats with a decrease in their absolute capacity. Presenile male rats are characterized by an increase in the absolute capacity of the delta activity by 3.3 times, theta activity by 2 times, alpha activity by 9 times, beta-activity by 4.5 times compared with mature male rats. It is shown that with age, the dynamics of normalized capacities of the frequency EGtG components, deviated from the ergotropic zone of the hypothalamus, significantly changes. Juvenile male rats had almost equal distribution between high-frequency and low-frequency oscillations. Young male rats had been characterized by the highest rates of beta activity (57.54±3.23 %), prevalence of high-frequency oscillations and therefore desynchronization was observed. The bioelectric activity of the ergotropic zone of the hypothalamus in mature male rats was represented by slow-wave synchronization processes, where the highest percentages were registered in the delta range (49.03±8.6 %). In presenile male rats a sharp increase in alpha activity (30±3.5 %) by 1.9 times was observed as compared with young and mature rats. We believe that the results of the study on age-related modulation of bioelectric activity of the ergotropic zone of the hypothalamus in male rats reflect adaptive-compensatory changes in central neurotransmission in general.

Tags:

ergotropic zone of the hypothalamus, Electric Hypothalamus Test (EGtG), normalized capacities of bioelectric activity, male rats, age

Bibliography:

  1. Zhurakіvska OJa. Vіkovі morfologіchnі zmіni ventromedіalnogo jadra gіpotalamusa. Molodij vchenij. 2014;5(08):154-7. [in Ukrainian].
  2. Zaеc NS, Ljashenko VP, Burceva DO, Lukashov SM, Melnіkova OZ. Adaptacіjnі reakcії nejrosinaptichnoї aktivnostі ergotropnoї zoni gіpotalamusa shhurіv za umov luzhnogo racіonu. Vchenі zapiski Tavrіjskogo nacіonalnogo unіversitetu іm. V.І. Vernadskogo. Serіja «Bіologіja, hіmіja». 2014;27:46-55. [in Ukrainian].
  3. Musi N, Hornsby P. Handbook of the Biology of Aging. 8-th edition. New York: Academic Press; 2015. 576 p.
  4. Yoo S, Blackshaw S. Regulation and function of neurogenesis in the adult mammalian hypothalamus. Progress in Neurobiologу. 2018;54(2):71-88. DOI: 10.1016/j.pneurobio.2018.04.001
  5. Bezrukov VV. Gipotalamus pri starenii. Fiziologicheskie mehanizmy sarenija. Leningrad: Nauka; 1982. s. 94-107. [in Russian].
  6. Frolkis VV. Starenie. Nejrogumoralnye mehanizmy. Kiev: Naukova dumka; 1981. 321 s. [in Russian].
  7. Ljashenko VP, Melnikova OZ, Gorkovenko AV, Lukashov SM, Chaus TG. Dinamіka harakteristik elektrichnoy aktivnostі trofo- ta ergotropnoy zoni gіpotalamusa shhurіv u perebіgu dovgotrivalogo emocіjnogo stresu. Nejrofіzіologіja. 2007;39:69-80. [in Ukrainian].
  8. Chaus TG, Ljashenko VP, Tkachenko JaO. Zagalna harakteristika elektrichnoy aktivnostі gіpotalamusu shhurіv za umov stresu ta prignіchennja kateholergіchnoy nejroperedachі rezerpіnom. Prirodnichij almanah. 2015;41:167-81. [in Ukrainian].
  9. Zadorozhna GO, Ljashenko VP. Vpliv vihrovogo іmpulsnogo magnіtnogo polja pravogo ta lіvogo obertannja na bіoelektrichnu aktivnіst perednoy ta zadnoy zon gіpotalamusa za umov modeljuvannja stresu. Vіsnik Dnіpropetrovskogo unіversitetu. Bіologіja. Ekologіja. 2008;16:93-8. [in Ukrainian].
  10. Zapadnjuk IP, Zapadnjuk EA, Zaharija EA. Laboratornye zhivotnye: razvedenie, soderzhanie, ispolzovanie v jeksperimente. Kiyv: Vishha shkola; 1983. 383 s. [in Russian].
  11. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 5-th edition. New York: Academic Press; 2005. 367 р.
  12. Kinawy AA, Ezzat AR, Al-Suwaigh BR. Inhalation of air polluted with gasoline vapours alters the levels of amino acid neurotransmitters in the cerebral cortex, hippocampus, and hypothalamus of the rat. Exp Toxicol Pathol. 2014;66(5-6):219-24. DOI: 10.1016/j. etp.2014.02.001
  13. Falconi-Sobrinho LL, Anjos-Garcia TD, de Oliveira R, Coimbra NC. Decrease in NMDA receptor-signalling activity in the anterior cingulate cortex diminishes defensive behaviour and unconditioned fear-induced antinociception elicited by GABAergic tonic inhibition impairment in the posterior hypothalamus. Eur Neuropsychopharmacol. 2017;27(11):1120-31.
  14. Sharma RK, Choudhary RC, Reddy MK, Ray A, Ravi K. Role of posterior hypothalamus in hypobaric hypoxia induced pulmonary edema. Respir Physiol Neurobiol. 2015;205:66-76. DOI: 10.1016/j.resp.2014.10.010
  15. Melnikova OZ, Ljashenko VP. Issledovanie mediatornyh mehanizmov moduljacii pri dlitelnom stresse fonovoj summarnoj jelektricheskoj aktivnosti jergotropnoj zony gipotalamusa krys. Uchenye zapiski Tavricheskogo nacionalnogo universiteta im. V.I. Vernadskogo. Serija «Biologija, himija». 2009;22(61):92-102. [in Russian].
  16. Finnema SJ, Scheinin M, Shahid M, Lehto J, Borroni E, Bang-Andersen B, et al. Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology. 2015;232(21-22):4129-57. DOI: 10.1007/s00213-015-3938-6
  17. Vetrile LA, Zakharova IA, Kudrin VS, Klodt PM. Effects of antiglutamate antibodies on the development of stress response and neurotransmitter content in the hippocampus and hypothalamus of rats with different behavioural activity. Bulletin of Experimental Biology and Medicine. 2013;155(3):318-23.

Publication of the article:

«Bulletin of problems biology and medicine» Issue 2 (144), 2018 year, 201-206 pages, index UDK 612.82:612.66:599.323.45

DOI: