Lutsyk S. A., Yashchenko A. М.

HISTOTOPOGRAPHY OF WGA RECEPTOR SITES IN POSTNATAL MORPHOGENESIS OF RAT ADRENAL GLAND IN PHYSIOLOGICAL CONDITIONS AND UNDER EXPERIMENTAL HYPO- AND HYPERTHYROIDISM OF MATERNAL ORGANISM


About the author:

Lutsyk S. A., Yashchenko A. М.

Heading:

MORPHOLOGY

Type of article:

Scentific article

Annotation:

Using WGA lectin the morphogenesis of rat adrenal glands in physiological conditions and under maternal hypo- and hyperthyroidism was investigated. On the day 20th of prenatal ontogenesis in the central part of control group animals adrenal glands were identified islets of cells with large basophilic nuclei and light cytoplasm, which were considered as chromaffine cells precursors of adrenal medulla. Endothelium of microvascular bed showed marked affinity for WGA lectin, encompassing exposure of DGlcNAc and NeuNAc carbohydrate determinants. In progeny developed under maternal hypothyroidism it was detected the enlargement of vascular bed of the adrenal medulla accompanied with the lack of chromaffin cells, which apparently indicate a delay in the adrenal gland morphogenesis. On the postnatal day 1st adrenal medulla consisted of elongated clusters of chromaffin cells, subdivided with the blood vessels, whereas on the 10th postnatal day in all experimental groups medulla was clearly separated from cortex. On the background of complete lectin areactivity of adrenocorticocytes, chromaffine cells demonstrated the accumulation of WGA lectin receptor sites: the degree of exposure was higher in offspring that developed under hypo- and hyperthyroidism, which could be regarded as certain violation of adrenal morphogenesis. Lectin reactivity of endothelial cells in zona glomerulosa and zona fasciculata reduced during postnatal development, while endothelium of zona reticularis, in parts, preserved affinity for it. On the postnatal day 40th and in the adult rats adrenal glands medulla consisted of two subpopulations of chromaffine cells: strong WGA-positive epinephrocytes, and less reactive norepinephrocytes. Maternal hyperthyroidism induced hypertrophy of adrenal gland cortical part. The obtained data makes it possible recommendation of WGA lectin as a selective histochemical marker of chromaffine cells with the possibility of differential detection of epinephrocytes and norepinephrocytes. Maternal hypothyroidism induced delay of adrenal gland maturation on early stages of postnatal development, whereas thickening of the adrenal cortex was the most characteristic sign for maternal hyperthyroidism.

Tags:

rat adrenal gland, postnatal morphogenesis, maternal hypo- and hyperthyroidism, lectin histochemistry

Bibliography:

  1. Broulík PD, Marek J, Schreiber V. The effect of experimental hyperthyroidism on renal and adrenal weight increase in mice. Physiol Res. 1991;40(5):527-32.
  2. Detiuk ES, Avgustinovich MS. О morpho-functional’nych osobennostiach nadpochechnych zhelez potomstva ot samok s eksperymental’nym hypotyreosom. Archiv anatomii gistologii i embryologii. 1976;71(10):41-5. [in Russian].
  3. Karaca T, Hulya UZY, Karabacak R, Karaboga I, Demirtas S, Cagatay Cicek A. Effects of hyperthyroidism on expression of vascular endothelial growth factor (VEGF) and apoptosis in fetal adrenal glands. Eur J Histochem. 2015;59(4):258-62. 
  4. Yashchenko A, Lutsyk S. The influence of hypo- and hyperthyroidism on morphogenesis and histophysiology of adrenal glands. J Embryol Stem Cell Res. 2018;2(1):000107.
  5. Moore NA, Callas G. The effects of hyperthyroidism on the fine structure of the zona fasciculata of the rat adrenal cortex. Anat Rec. 1972;174(4):451-67.
  6. Ramirez D, Talesnik J. Role of the adeno-hypophysis in the adrenal hypertrophy of rats with experimental hyperthyroidism. Acta Physiol Lat Am. 1961;11:21-9.
  7. Silva JE, Bianco SD. Thyroid-adrenergic interactions: physiological and clinical implications. Thyroid. 2008;18(2):157-65.
  8. Udoye MO, Nonavinakere VK, Soliman KF. In vivo response of the normal and regenerating adrenal glands to thyroid manipulation in rats. Res Commun Mol Pathol Pharmacol. 1997;95(2):221-4.
  9. Wondisford FE. A direct role for thyroid hormone in development of the adrenal cortex. Endocrinology 2015;156(6):1939-40.
  10. Wuttke H, Kessler FJ, Löbbert G, Vetter H. Effect of experimentally induced hyperthyroidism on zona glomerulosa from adrenal cortex of the rat. Med Klin. 1976;71(6):239-43.
  11. Brooks SA, Dwek MV, Schumacher U. Functional and molecular glycobiology. Oxford, Bios Scientific Publishers; 2002. 268 p.
  12. Dumych T, Yamakawa N, Bilyy R, Bouckaert JMJ. Oligomannose-rich membranes of dying intestinal epithelial cells promote host colonization by adherent-invasive E. coli. Front Microbiol. 2018. DOI: 10.3389/fmicb.2018.00742
  13. Gabius HJ. The sugar code: why glycans are so important. Biosystems. 2018;164:102-11.
  14. Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006;126:855-67.
  15. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, et al. Essentials of glycobiology. 2nd ed. Cold Spring Harbor, Cold Spring Harbor Laboratory Press; 2009. Р. 29-178.
  16. Antoniuk VO. Lectyny ta jich syrovynni dzherela. Lviv: Kvart; 2005. 554 s. [in Ukrainian].
  17. Lutsyk AD, Detiuk ES, Lutsyk MD. Lectiny v gistochimii. Lviv: Vyshcha shkola; 1989. 144 s. [in Russian].
  18. Roth J. Lectins for histochemical demonstration of glycans. Histochem Cell Biol. 2011;136(2):117-30.
  19. Sharon N, Lis H. Lectins. 2nd ed. Dordrecht, Springer; 2007. 464 p.
  20. Voloshyn NA, Grigorieva EA. Lectiny zhyvotnogo i rastitel’nogo proischozhdeniia: rol’ v processach morphogeneza. Zhurnal Academii meditsynskich nauk Ukrainy. Teoreticheskaya Meditsyna. 2005;11(2):223-37. [in Russian].
  21. Bilyy R, Stoika R. Sweet taste of cell death: role of carbohydrate recognition systems. In: Biochemistry and biotechnology for modern medicine. Ed. S. Komisarenko. Kyiv, Moskalenko Publishing House; 2013. р. 615-36.
  22. Haltiwanger RS, Lowe JB. Role of glycosylation in development. Ann Rev Biochem. 2004;73:491-37.
  23. Smolkova O, Zavadka A, Bankston P, Lutsyk A. Cellular heterogeneity of rat vascular endothelium as detected by HPA and GS-I ectin-gold probes. Med Sci Monit. 2001;7(4):659-68.
  24. Parker GA, Picut CA, editors. Atlas of histology of the juvenile rat. Amsterdam: Elsevier-Academic Press; 2016. р. 261-4, 285-91.
  25. Ahi M, Zamansoltani F, Taheri MMH, Bideskan ARE. The role of GalNAc terminal sugar on adrenal gland development. Adv Biol Res. 2007;1(12):34-9.

Publication of the article:

«Bulletin of problems biology and medicine» Issue 2 (144), 2018 year, 325-329 pages, index UDK 612.451-018.1:(616.441-008.64+616.441-008.61):581.162.1-092.4/.9

DOI: