Petrenko O. V., Yakovets A. I.

ASSESSMENT OF THE FUNCTIONAL STATE OF THE VISUAL ANALYZER AFTER CELLULAR GLAUCOMA THERAPY IN THE EXPERIMENT


About the author:

Petrenko O. V., Yakovets A. I.

Heading:

CLINICAL AND EXPERIMENTAL MEDICINE

Type of article:

Scentific article

Annotation:

Glaucoma is the leading cause of irreversible blindness worldwide. The problem of developing new effective treatments for glaucoma is one of the most pressing in modern ophthalmology. Today, a promising area in the treatment of glaucoma is cell therapy using stem cells. The aim of the study was to investigate changes in the functional status of the visual analyzer using postnatal multipotent neural crest stem cells (NCSCs) in the treatment of adrenaline-induced glaucoma by visual evoked potentials on flashes. Object and methods. Studies were performed on 50 adult Wistar rats, males, comprising five groups of animals (n = 10 in each group). Glaucoma was induced in Wistar rats by intraperitoneal injections of 10 μg to 15 μg/100 g body weight of 0.18% adrenaline hydrotartrate. NCSCs were delivered intravenously (5 million cells), retrobulbarly (0.5 million cells) or parabulbarly (0.5 million cells). Visual evoked potentials on flashes were performed in four measurement periods, namely, before glaucoma modeling, after glaucoma modeling, 1 month, and 3 months after NCSCs administration in different ways. Results. NCSCs had the nestin+ p75+ Sox10+ cytokeratin- . In the study in the group of animals with the model of glaucoma without the introduction of NCSCs revealed a statistically significant increase in LPN1 (p<0.001), on average, 2.0 ms (95% CI 1.5 ms – 2.5 ms) and a statistically significant increase in LPP2 (p <0.001), on average, 1.7 ms (95% CI 1.1 ms – 2.7 ms) from I to III measurement period. There was also a decrease in the amplitude of P1-N1 – from I to II period of measurement of the decrease of the index (p<0.05), on average, by 2.3 μV (95% CI 1.8 μV – 2.9 μV) and the decrease of the amplitude index N1-P2 (p<0.05), on average, 2.4 μV (95% CI 2.1 μV – 2.7 μV); from II to IV measurement period decrease in P1-N1 amplitude (p<0.05), on average, 0.6 μV (95% CI 0.2 μV – 0.8 μV) and decrease in N1-P2 amplitude (p<0.05), on average, by 1.4 μV (95% CI 0.8 μV – 2.1 μV), compared with the group of intact animals, indicating changes in the functional status of the visual analyzer in the adrenaline model of glaucoma. After the introduction of NCSCs, an increase in the amplitude of P1-N1 and N1-P2 was observed after 1 and 3 months, which was most pronounced with parabulbar and retrobulbar administration: an increase in P1-N1 (p<0.05), on average, by 1.5 μV (95% CI 1.2 μV – 1.6 μV) and an increase of N1-P2 (p<0.05), on average, 1.75 μV (95% CI 1.6 μV – 1,85 μV) – parabulbar; an increase of P1-N1 (p<0.05), on average, 1.5 μV (95% CI 1.2 μV – 1.6 μV) and an increase of N1-P2 (p<0.05), in on average, 2.1 μV (95% CI 1.8 μV – 2.2 μV) – retrobulbar. Conclusions. In the experimental study observed the positive effect of transplantation of NCSCs in the adrenaline model of glaucoma, which was most pronounced with parabulbar and retrobulbar administration. However, further studies on the mechanisms of the effect of transplanted NCSCs on the restoration of retinal and optic nerve structure are needed.

Tags:

glaucoma, multipotent stem cells, visual evoked potentials.

Bibliography:

  1.  Quigley HA, Broman AT. Number of people with glaucoma worldwide in 2010 and in 2020. Br J Opthalmol. 2006;90:262-7. 2
  2. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121:2081-90. DOI: 10.1016/j.ophtha.2014.05.013
  3. Rykov SO, Medvedovska NV, Troyanov DP. Suchasnyi stan ta dynamika poshyrenosti glaukomy sered doroslogo naselennia Ukrainy. Zdorovia natsii. 2012;2(22):119-21. [in Ukrainian].
  4. Oftalmolohichna dopomoha v Ukraini za roky nezalezhnosti. Analitychno-statystychnyi dovidnyk. Kropyvnytskyi: Polium; 2019. 328 s. [in Ukrainian].
  5. Erichev VP, Tumanov VP, Paniyshkina LA. Glaukoma i neyrodegenerativnye zabolevaniia. Natsyonalnyi zhurnal glaucoma. 2012;1:62-8. [in Russian].
  6. Weinreb RN, Aung T, Medeiros FA. The Pathophysiology and Treatment of Glaucoma. JAMA. 2014;311(18):1901-11. DOI: 10.1001/ jama.2014.3192
  7. Petrov SY, Fokina ND, Sherstneva LV, Vostruhin SV, Safonova DM. Etioilohiia pervichnoi glaukomy: sovremennye teorii i issledovaniia. Oftalmolohicheskie vedomosti. 2015;7(2):47-56. DOI: 10.17816/OV2015247-56 [in Russian].
  8. Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Investigative ophthalmology and visual science. 2010;51:2051-9.
  9. Manuguerra-Gagne R, Boulos PR, Ammar A, Leblond FA, Krosl G, Pichette V, et al. Transplantation of Mesenchymal Stem Cells Promotes Tissue Regeneration in a Glaucoma Model Through Laser-Induced Paracrine Factor Secretion and Progenitor Cell Recruitment. Stem Cells. Regenerative Medicine. 2013;31:1136-48.
  10. Roubeix Ch, Godefroy D, Mias C, Sapienza A, Riancho L, Degardin J, et al. Intraocular pressure reduction and neuroprotection conferred by bone marrow derived mesenchymal stem cells in an animal model of glaucoma. Stem Cell Research & Therapy. 2015;6:177. DOI: 10.1186/s13287-015-0168-0
  11. Elisseeff J, Madrid MG, Lu Q, Chae JJ, Guo Q. Future Perspectives for Regenerative Medicine in Ophthalmology. Middle East African J. Ophthalmology. 2013;20:38-45. DOI: 10.4103/0974-9233.106385
  12. Liu JA, Cheung M. Neural crest stem cells and their potential therapeutic applications. Dev Biol. 2016;419(2):199-216. DOI: 10.1016/j. ydbio.2016.09.006
  13. Huber C, Wagner T. Electrophysiological evidence for glaucomatous lesions in the optic nerve. Ophtalmol. 1978;10:22-9.
  14. Parisi V, Miglior S, Manni G, Centofanti M, Bucci MG. Clinical ability of pattern electroretinograms and visual evoked potentials in detecting visual dysfunction in ocular hypertension and glaucoma. Ophtalmology. 2006;113:216-28. DOI: 10.1016/j.ophtha.2005.10.044
  15. Stotska LM, Chokova IB, Romodanova KS. Doslidzhennya zorovyh vyklykanyh potentsialiv v klinichniy praktytsi u patsientiv z pervynnoyu vidkrytokutovoyu glaukomoyu. Oftalmologichnuy zhurnal. 2016;1(468):19-23. [in Ukrainian].
  16. Mitchell KW, Wood CM, Howe JW, Church WH, Smith GTH, Spencer SR. The visual evoked potential in acute primary angle closure glaucoma. Br J Ophthalmol. 1989;73:448-56.
  17. Jha MK, Thakur D, Limbu N, Badhu BP, Paudel BH. Visual Evoked Potentials in Primary Open Angle Glaucoma. J Neurodegenerative Dis. [Internet]. 2017;1-4. DOI: 10.1155/2017/9540609
  18. Stotska LM. Otsinka harakterystyk zorovyh vyklykanyh potsentsialiv u klinichnomu konteksti z funktsionalnymy pokaznykamy na riznyh stadiyah pervynnoi vidkrytokutovoi glaukomy. Oftalmolohichnyi zhurnal. 2016;3(470):22-7. [in Ukrainian].
  19. Mikheytseva IN. Glaucoma modeling and adrenal stress. J. Clin. Exp. Med. Res. 2014;2(4):427-37. Available from: http://essuir.sumdu. edu.ua/handle/123456789/38944
  20. Vasyliev RG, Rodnichenko AE, Zubov DA, Labunets IF, Novikova SN, Butenko GM. In vitro Properties of neural crest-derived multipotent stem cells from a bulge region of whisker follicle. Biotechnologia Acta. 2014;7(4):73-9. DOI: 10.15407/biotech7.04.071
  21. Gnezditskiy VV. Vyzvannye potentsialy mozga v klinicheskoy praktike. Taganrog: TRTU; 1997. 252 s. [in Russian].
  22. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452-8.
  23. Hurianov VH, Liakh YuYe, Pariy VD, Korotkyi OV, Chalyi OV, Chalyi KO, ta in. Posibnyk z biostatystyky. Analiz rezultativ medychnykh doslidzhen u paketi EZR (R-statistics). Kyiv: Vistka; 2018. 208 s. [in Ukrainian].

Publication of the article:

«Bulletin of problems biology and medicine» Issue 2 (156), 2020 year, 143-148 pages, index UDK 617.75-036:617.7-007.681-089.844:611.08

DOI: