Ishchenko O. V., Efimenko A. О., Andriiashyna O., Koshova I. P., Stepanskyi D. O.

SURVIVAL STRATEGIES OF PSEUDOMONAS AERUGINOSA IN THE RESPIRATORY TRACT IN CYSTIC FIBROSIS


About the author:

Ishchenko O. V., Efimenko A. О., Andriiashyna O., Koshova I. P., Stepanskyi D. O.

Heading:

LITERATURE REVIEWS

Type of article:

Scentific article

Annotation:

Abstract. Introduction. Competition between ubiquitous Pseudomonas aeruginosa and Aspergillus fumigatus is common in various ecological niches. Patients with cystic fibrosis are characterized by high microbial colonization of the airways, which determines the prognosis for their health. The purpose of the work was to describe the relationship between P. aeruginosa and A. fumigatus in people with cystic fibrosis. Materials and methods. Review of data in the scientific databases PubMed/MEDLINE, Scopus, Google Scholar on the search words «Pseudomonas aeruginosa» and «Aspergillus» and «Cystic Fibrosis». Results and their discussion. There is a competition between P. aeruginosa and A. fumigatus for nutrients in the microenvironment of the respiratory tract. Depending on the availability of growth factors, P. aeruginosa produces a range of factors, including acyl-homoserine lactones, alkyl-quinolones, rhamnolipids, phenazines, siderophores, which affect A. fumigatus. Some of these molecules are quorum-sensing signals and are used by P. aeruginosa for intercellular communication of bacterial clones. In addition, biofilm formation in A. fumigatus can be inhibited by acylhomoserine lactones and alkyl-quinolones. 3-oxo-C12-homoserine-lactone, signal quinolone Pseudomonas and its precursor 2-heptyl-4-quinolone could affect A.fumigatus biofilms and the structure of hyphae. Bacterial phenazines are differentiated to modulate the ability to produce biofilms in A. fumigatus: low reactive concentrations of reactive oxygen species serve as a signal for sporulation, but high levels exhibit toxic properties. Consequently, reproductionin A. fumigates switches from vegetative to conidia according to thegradient of phenazinesunder cultivation in mixedculture, and in general, correlate with levels of phenazines radicals in phenazines-producing redox processes. Conclusions. The interaction between P. aeruginosa and A. fumigatus plays an important role in the pathogenesis of cystic fibrosis. A better understanding of the strategies of such interactions will certainly have an impact on improving the therapeutic opportunitiesin cystic fibrosis and, consequently, the prognosis for the life and health of such patients.

Tags:

Pseudomonas quinolone, Aspergillus fumigatus, biofilms.

Bibliography:

  1. Ilʹchenko SI, Fialkovsʹka AO, Skryabina KV. Analiz struktury ta antybiotykorezystentnosti etiolohichno znachushchykh patoheniv khronichnoyi infektsiyi nyzhnikh dykhalʹnykh shlyakhiv u ditey iz mukovistsydozom, yaki meshkayutʹ v m.Dnipro. Zdorovʺya dytyny. 2020;2(15):16- 22. [in Ukrainian].
  2. Chatterjee P, Sass G, Swietnicki W, Stevensen DA. Review of Potential Pseudomonas Weaponry, relevant to the Pseudomonas-Aspergillus interplay, for the Mycology community. Journal of Fungi. 2020;6(81):22. doi: 10.3390/jof6020081.
  3. Keown K, Reid A, Moore JE, Taggart CC, Downey DG. Coinfection with Pseudomonas aeruginosa and Aspergillus fumigatus in cystic fibrosis. Eur Respir Rev. 2020;29:200011. doi: https://doi.org/10.1183/16000617.0011-2020.
  4. Lipuma JJ. The changing microbial epidemiology in cystic fibrosis. Clin. Microbiol. Rev. 2010;23:299-323.
  5. De Bentzmann S, Plésiat P. The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environ. Microbiol. 2011;13:1655- 1665.
  6. Ramsey KA, Ranganathan S, Park J, Skoric B, Adam AM, Simpson SJ, et al. Early respiratory infection is associated with reduced spirometry in children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2014;190:1111-1116.
  7. Cornelis P, Dingemans J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front. Cell Infect Microbiol. 2013;3:75.
  8. Matthaiou EI, Sass G, Stevens DA, Hsu JL. Iron: An essential nutrient for Aspergillus fumigatus and a fulcrum for pathogenesis. Curr. Opin. Infect Dis. 2018;31;506-511.
  9. Briard B, Bomme P, Lechner BE, Mislin GL, Lair V, Prévost MC, et al. Pseudomonas aeruginosa manipulates redox and iron homeostasis of its microbiota partner Aspergillus fumigatus via phenazines. Sci. Rep. 2015;5:8220.
  10. Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O, Høiby N, et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: An evolutionary perspective. Nat. Rev. Microbiol. 2012;10:841-851.
  11. Smyth AR, Hurley MN. Targeting the Pseudomonas aeruginosa biofilm to combat infections in patients with cystic fibrosis. Drugs Future. 2010;35:1007-1014.
  12. Williams P, Cámara M. Quorum sensing anenvironmental adaptation in Pseudomonas aeruginosa: A tale of regulatory networks and multifunctional signal molecules. Curr. Opin. Microbiol. 2009;12:182-191.
  13. Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. The Multiple Signaling Systems Regulating Virulence in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 2012;76:46-65.
  14. Déziel E, Lépine F, Milot S, He J, Mindrinos MN, Tompkins RG, et al. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natl. Acad. Sci. USA. 2004;101:1339-1344.
  15. Schuster M, Greenberg EP. Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. BMC Genomics. 2007;8:287.
  16. Dekimpe V, Déziel E. Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: The transcriptional regulator RhlR regulates LasR-specific factors. Microbiology. 2009;155:712-723.
  17. Lee J, Wu J, Deng Y, Wang J, Wang C, Wang J, et al. A cell-cell communication signal integrates quorum sensing and stress response. Nat. Chem. Biol. 2013;9:339-343.
  18. Lin J, Cheng J, Wang Y, Shen X. The Pseudomonas Quinolone Signal (PQS): Not Just for Quorum Sensing Anymore. Front. Cell Infect Microbiol. 2018;8:230.
  19. Reen FJ, Phelan JP, Woods DF, Shanahan R, Cano R, Clarke S, et al. Harnessing bacterial signals for suppression of biofilm formation in the nosocomial fungal pathogen Aspergillus fumigatus. Front. Microbiol. 2016;7:2074.
  20. Bala A, Kumar L, Chhibber S, Harjai K. Augmentation of virulence related traits of pqs mutants by Pseudomonas quinolone signal through membrane vesicles. J. Basic Microbiol. 2015;55:566-578.
  21. Popat R, Harrison F, da Silva AC, Easton SA, McNally L, Williams P, et al. Environmental modification via a quorum sensing molecule influences the social landscape of siderophore production. Proceed. Biolog. Sci. 2017;284:20170200.
  22. Schuster M, Greenberg EP. Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. BMC Genomics. 2007;8:287.
  23. Peek ME, Bhatnagar A, McCarty NA, Zughaier SM. Pyoverdine, the Major Siderophore in Pseudomonas aeruginosa, Evades NGAL Recognition. Interdiscip Perspect Infect Dis. 2012;2012:ID843509.
  24. Lamont IL, Konings AF, Reid DW. Iron acquisition by Pseudomonas aeruginosa in the lungs of patients with cystic fibrosis. BioMetals. 2009;22:53-60.
  25. Sass G, Nazik H, Penner J, Shah H, Ansari SR, Clemons KV, et al. Studies of Pseudomonas aeruginosa mutants indicate pyoverdine as the central factor ininhibition of Aspergillus fumigatus biofilm. J Bacteriol. 2017;200:e00345-17.
  26. Briard B, Mislin GLA, Latgé JP, Beauvais A. Interactions between Aspergillus fumigatus and Pulmonary Bacteria: Current State of the Field, New Data, and Future Perspective. J. Fungi (Basel). 2019;5:48.
  27. Brandel J, Humbert N, Elhabiri M, Schalk IJ, Mislin GLA, Albrecht-Gary AM. Pyochelin, a siderophore of Pseudomonas aeruginosa: Physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes. Dalton. Trans. 2012;41:2820-2834.
  28. Michalska M, Wolf P. Pseudomonas Exotoxin A: Optimized by evolution for effective killing. Front. Microbiol. 2015;6:963.
  29. Grahl N, Kern SE, Newman DK, Hogan DA. Microbial Phenazines. Berlin/Heidelberg: Springer; 2013. Chapter 3, The Yin and Yang of Phenazine Physiology; p. 43-69.
  30. Recinos DA, Sekedat MD, Hernandez A, Cohen TS, Sakhtah H, Prince AS, et al. Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity. Proc. Natl. Acad. Sci. USA. 2012;109:19420- 19425.
  31. Smith K, Rajendran R, Kerr S, Lappin DF, Mackay WG, Williams C, et al. Aspergillus fumigatus enhances elastase production in Pseudomonas aeruginosa co-cultures. Med. Mycol. 2015;53:645-655.
  32. Zheng H, Kim J, Liew M, Yan JK, Herrera O, Bok JW, et al. Redox metabolites signal polymicrobial biofilm development via the NapA oxidative stress cascade in Aspergillus. Curr. Biol. 2015;25:29-37.

Publication of the article:

«Bulletin of problems biology and medicine» Issue 2 (160), 2021 year, 29-34 pages, index UDK 579.262-616.24-008.8.078

DOI: