ASSESSMENT OF THE INFLUENCE OF CADMIUM ON THE DEVELOPMENT OF BONE AND CARTILAGINOUS PATHOLOGY AND THE ROLE OF SUCCINATES IN THE CORRECTION OF Cd-INDUCED CYTOTOXICITY
About the author:
Nefodova O. O., Shevchenko O. S., Halperin О. I., Shevchenko I. V., Bashta I. G., Baklunov V. V.
Heading:
LITERATURE REVIEWS
Type of article:
Scentific article
Annotation:
Abstract. Environmental contamination is becoming an increasingly serious problem for humanity every year. One of the most dangerous, long-acting and stable pollutants are heavy metals, the most common man-made associations of which are represented by salts of mercury, cadmium and lead. One of the main “targets” of the negative effects of cadmium is bone tissue. The central link in the pathogenesis of Cd-induced osteotoxicity is considered to be an imbalance between the processes of bone remodeling, the regulation of which occurs under the influence of systemic and local factors. In this case, systemic factors (calcitriol, somatotropic hormone, insulin, thyroid hormones, etc.) maintain a constant metabolism of calcium, phosphorus, magnesium from bone to extracellular fluid and vice versa, and local (insulin-like growth factor, fibroblast growth factor, prostaglandin E2, etc.) are mediators of the response to mechanical stress. It is believed that the indirect mechanism of Cd-induced osteotoxicity is mediated by the development of renal failure associated with increased renal excretion of calcium and phosphorus, inhibition of the production of active metabolites of vitamin D, and impaired absorption of calcium in the digestive tract. The direct mechanism involves the direct action of the toxicant, which causes dysfunction of bone cells and causes increased bone resorption and weakening of its calcification. The leading mechanism underlying Cd-induced cytotoxicity is oxidative stress. Succinates have an inhibitory effect on lipid peroxidation in mitochondria, inhibit FAD-induced electron to oxygen transfer in mitochondrial respiratory complex II, which significantly reduces the production of superoxide and H2 O2 , and suppress the generation of ROS, disrupting the transfer of electrons through complex II to the ubiquinone pool. By helping to restore the balance of activity of pro- and antioxidant systems, inhibit the excessive generation of ROS and weaken the processes of LPO, succinates can potentially eliminate or significantly reduce the manifestations of Cd-induced toxicity.
Tags:
environmental contamination, cadmium, osteotoxicity, oxidative stress, succinates.
Bibliography:
- Verkhovna Rada Ukrayiny. Pro Osnovni zasady (stratehiiu) derzhavnoi ekolohichnoi polityky Ukrainy na period do 2030 roku [Internet]. Kyyiv: Verkhovna Rada Ukrayiny; 2019 Lyutyy 28. Dostupno: https://zakon.rada. gov.ua/laws/show/2697-19. [in Ukrainian].
- Kalashnyk OM. Ekolohichna bezpeka yak skladova derzhavnoi polityky Ukrainy: poniatiino-terminolohichnyi aspekt. Demokratychne vriaduvannia. 2018;21:12-19. Dostupno: http://nbuv.gov.ua/UJRN/DeVr_2018_21_4. [in Ukrainian].
- Landrigan PJ, Fuller R. Pollution, health and development: the need for a new paradigm. Rev Environ Health. 2016;31(1):121-4.
- Siddique HMA, Kiani AK. Industrial pollution and human health: evidence from middle-income countries. Environ Sci Pollut Res Int. 2020;27(11):12439-48.
- Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu NN, et al. The Lancet Commission on pollution and health. Lancet. 2018;391(10119):462-512.
- Romaniuk AM, Sikora VV, Lyndina YuM, Lyndin MS. Poshyrenist vazhkykh metaliv u navkolyshnomu seredovyshchi ta yikh rol u zhyttiediialnosti orhanizmu (ohliad literatury). Bukovynskyi medychnyi visnyk. 2017;2(1):163-8. [in Ukrainian].
- Lee WK, Thévenod F. Cell organelles as targets of mammalian cadmium toxicity. Arch Toxicol. 2020;94(4):1017-49.
- Rahman Z, Singh VP. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ Monit Assess. 2019;191(7):419.
- Alekseenko VA, Alekseenko AV. Khimicheskie ehlementy v geokhimicheskikh sistemakh. Klarki pochv selitebnykh landshaftov. Rostov-naDonu: Izdatel’stvo Yuzhnogo federal’nogo universiteta; 2013. 380 s. [in Russian].
- Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The Effects of Cadmium Toxicity. Int J Environ Res Public Health. 2020;17(11):3782.
- Zhang W, Liu Y, Liu Y, Liang B, Zhou H, Li Y, et al. An Assessment of Dietary Exposure to Cadmium in Residents of Guangzhou, China. Int J Environ Res Public Health. 2018;15(3):556.
- World Health Organization. Evaluation of certain food additives and contaminants. Eightieth report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organ Tech Rep Ser. 2016;995:1-114.
- Fedorenko VI. Obgruntuvannia dopustymykh dobovykh doz svyntsiu i kadmiiu v dobovykh ratsionakh kharchuvannia. Medychni perspektyvy. 2019;24(1):73-80. [in Ukrainian].
- Rodríguez J, Mandalunis PM. Effect of cadmium on bone tissue in growing animals. Exp Toxicol Pathol. 2016;68(7):391-7.
- Gu J, Li S, Wang G, Zhang X, Yuan Y, Liu X, et al. Cadmium Toxicity on Chondrocytes and the Palliative Effects of 1α, 25-Dihydroxy Vitamin D3 in White Leghorns Chicken’s Embryo. Front Vet Sci. 2021;8:637369.
- Rodríguez J, Mandalunis PM. A Review of Metal Exposure and Its Effects on Bone Health. J Toxicol. 2018;2018:4854152.
- Aganov DS, Tyrenko VV, Cygan EN, Toporkov MM, Bologov SG. Rol’ citokinovoj sistemy RANKL/RANK/OPG v regulyacii mineral’nogo obmena kostnoj tkani. Geny i kletki. 2014;9(4):50-2. [in Russian].
- Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 2021;39(1):19-26.
- Nishijo M, Nakagawa H, Suwazono Y, Nogawa K, Kido T. Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: a nested case-control analysis of a follow-up study in Japan. BMJ Open. 2017;7(7):e015694.
- Nishijo M, Nagakawa H, Morikawa Y, Tabata M, Miura K, Kawano S, et al. Clinical courses and prognosis of itai-itai disease patients induced by chronic cadmium exposure. In: Llobet JM, editors. Proceedings of the 4th International Symposium on Metal Ions in Biology and Medicine. Metal Ions in Biology and Medicine; 1996; Barcelona, Spain. Paris: John Libbey Eurotext; 1996. p. 608-10.
- Kasuya M. Recent epidemiological studies on itai-itai disease as a chronic cadmium poisoning in Japan. Water Sci Technol. 2000;42(7.8):147-54.
- Honda R, Tawara K, Nishijo M, Nakagawa H, Tanebe K, Saito S. Cadmium exposure and trace elements in human breast milk. Toxicology. 2003;186(3):255-9.
- Youness ER, Mohammed NA, Morsy FA. Cadmium impact and osteoporosis: mechanism of action. Toxicol Mech Methods. 2012;22(7):560-7.
- Jain RB. Co-exposures to toxic metals cadmium, lead, and mercury and their impact on unhealthy kidney function. Environ Sci Pollut Res Int. 2019;26(29):30112-30118.
- Wang C, Nie G, Zhuang Y, Hu R, Wu H, Xing C, et al. Inhibition of autophagy enhances cadmium-induced apoptosis in duck renal tubular epithelial cells. Ecotoxicol Environ Saf. 2020;205:111188.
- Nogawa K, Tsuritani I, Kido T, Honda R, Ishizaki M, Yamada Y. Serum vitamin D metabolites in cadmium-exposed persons with renal damage. Int Arch Occup Environ Health. 1990;62(3):189-93.
- Suljević D, Islamagić E, Čorbić A, Fočak M, Filipić F. Chronic cadmium exposure in Japanese quails perturbs serum biochemical parameters and enzyme activity. Drug Chem Toxicol. 2020;43(1):37-42.
- Nishijo M, Nambunmee K, Suvagandha D, Swaddiwudhipong W, Ruangyuttikarn W, Nishino Y. Gender-Specific Impact of Cadmium Exposure on Bone Metabolism in Older People Living in a Cadmium-Polluted Area in Thailand. Int J Environ Res Public Health. 2017;14(4):401.
- Brzóska MM. Low-level chronic exposure to cadmium enhances the risk of long bone fractures: a study on a female rat model of human lifetime exposure. J Appl Toxicol. 2012;32(1):34-44.
- García-Mendoza D, Han B, van den Berg HJHJ, van den Brink NW. Cell-specific immune-modulation of cadmium on murine macrophages and mast cell lines in vitro. J Appl Toxicol. 2019;39(7):992-1001.
- Ma Y, Ran D, Zhao H, Song R, Zou H, Gu J, et al. Cadmium exposure triggers osteoporosis in duck via P2X7/PI3K/AKT-mediated osteoblast and osteoclast differentiation. Sci Total Environ. 2021;750:141638.
- Oliveira H, Monteiro C, Pinho F, Pinho S, Ferreira de Oliveira JM, Santos C. Cadmium-induced genotoxicity in human osteoblast-like cells. Mutat Res Genet Toxicol Environ Mutagen. 2014;775.776:38-47.
- Hu KH, Li WX, Sun MY, Zhang SB, Fan CX, Wu Q, et al. Cadmium Induced Apoptosis in MG63 Cells by Increasing ROS, Activation of p38 MAPK and Inhibition of ERK 1/2 Pathways. Cell Physiol Biochem. 2015;36(2):642-54.
- Unsal V, Dalkıran T, Çiçek M, Kölükçü E. The Role of Natural Antioxidants Against Reactive Oxygen Species Produced by Cadmium Toxicity: A Review. Adv Pharm Bull. 2020;10(2):184-202.
- Chen P, Bornhorst J, Diana Neely M, Avila DS. Mechanisms and Disease Pathogenesis Underlying Metal-Induced Oxidative Stress. Oxid Med Cell Longev. 2018;2018:7612172.
- Dan Dunn J, Alvarez LA, Zhang X, Soldati T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol. 2015;6:472-85.
- Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med. 2019;44(1):3-15.
- Yankovskaya V, Horsefield R, Törnroth S, Luna-Chavez C, Miyoshi H, Léger C, et al. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science. 2003;299(5607):700-4.
- Hervouet E, Simonnet H, Godinot C. Mitochondria and reactive oxygen species in renal cancer. Biochimie. 2007;89(9):1080-8.
- Dröse S. Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning. Biochim Biophys Acta. 2013;1827(5):578-87.
- Kluckova K, Sticha M, Cerny J, Mracek T, Dong L, Drahota Z, et al. Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation. Cell Death Dis. 2015;6(5):e1749.
- Narabayashi H, Takeshige K, Minakami S. Alteration of inner-membrane components and damage to electron-transfer activities of bovine heart submitochondrial particles induced by NADPH-dependent lipid peroxidation. Biochem J. 1982;202:97-105.
- Bindoli A, Cavallini L, Jocelyn P. Mitochondrial lipid peroxidation by cumene hydroperoxide and its prevention by succinate. Biochim Biophys Acta. 1982;681(3):496-503.
- Sharmila P, Kumari PK, Singh K, Prasad NV, Pardha-Saradhi P. Cadmium toxicity-induced proline accumulation is coupled to iron depletion. Protoplasma. 2017;254(2):763-70.
- Cavallini L, Valente M, Bindoli A. Comparison of cumene hydroperoxide- and NADPH/Fe3+/ADP-induced lipid peroxidation in heart and liver submitochondrial particles. Mechanisms of protection by succinate. Biochim Biophys Acta. 1984;795(3):466-72.
- Tretter L, Adam-Vizi V. Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J Neurosci. 2000;20(24):8972-9.
- Tretter L, Szabados G, Andó A, Horváth I. Effect of succinate on mitochondrial lipid peroxidation. 2. The protective effect of succinate against functional and structural changes induced by lipid peroxidation. J Bioenerg Biomembr. 1987;19(1):31-44.
- Quinlan CL, Orr AL, Perevoshchikova IV, Treberg JR, Ackrell BA, Brand MD. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem. 2012;287(32):27255-64.
- Shahmardanova SA, Gulevskaya ON, Hananashvili YaA, Zelenskaya AV, Nefedov DA, Galenko-Yaroshevskiy P. Preparatyi yantarnoy i fumarovoy kislot kak sredstva profilaktiki i terapii razlichnyih zabolevaniy. Zhurnal fundamentalnoy meditsinyi i biologii. 2016;3:16-30. [in Russian].
- Tretter L, Patocs A, Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim Biophys Acta. 2016;1857(8):1086-1101. DOI: 10.1016/j.bbabio.2016.03. 012.
Publication of the article:
«Bulletin of problems biology and medicine» Issue 2 (160), 2021 year, 34-39 pages, index UDK 616.71-018.3:546.48:612.014.46]-085:661.743.2

