Polishchuk О. I., Antonyak H. L., Pershyn O. I.

ACCUMULATION OF METALS IN GAMETOPHYTES OF SOME SPECIES OF MOSSES IN THE CITY OF LVIV


About the author:

Polishchuk О. I., Antonyak H. L., Pershyn O. I.

Heading:

HYGIENE AND ECOLOGY

Type of article:

Scentific article

Annotation:

Heavy metals are among the most dangerous air pollutants that can have a serious impact on biota and human health in industrial cities. Therefore, environmental monitoring of atmospheric air in urban ecosystems is of great importance. An important tool for environmental assessment is the use of mosses, which can serve as biological monitors of atmospheric pollution with metals. In order to identify effective biomonitor species, we have analyzed the concentrations of Cr, Mn, Ni, Pb and Zn in gametophytes of mosses Pylaisia polyantha (Hedw.) Schimp., Rhynchostegium murale (Hedw.) Schimp., and Schistidium apocarpum (Hedw.) Bruch & Schimp. collected in the territory of the city of Lviv (Ukraine). The concentrations of metals in moss samples were investigated using atomic absorption spectrophotometry. Results. The results of the study show that analyzed metals by the level of their accumulation in gametophytes of all three species of bryophytes can be arranged in decreasing order in the following range: Mn> Zn> Cr> Ni> Pb. However, the accumulation level of individual metals varied among different moss species. The moss S. apocarpum was characterized by the highest average concentration values of all analyzed metals except Pb, although statistically significant differences compared with the other two mosses were found only for manganese concentration. In particular, Mn content in the gametophyte of S. apocarpum was higher than in the gametophytes of P. polyantha and R. murale by 1.77 (p<0.05) and 1.87 times (p<0.01), respectively. Zn content in this moss was 1.42 times higher (p<0.05) than in R. murale, and the concentrations of Cr and Ni were 1.51 (p<0.05) and 2.04 times (p<0.01), respectively, higher than in P. polyantha. The moss R. murale, like S. apocarpum, was characterized by significantly higher concentrations of Cr and Ni compared to P. polyantha; however, the concentrations of Pb in S. apocarpum and R. murale were lower compared to P. polyantha (1.57 and 1.49 times, respectively). In order to clarify the relationship between the technogenic pollution of the territory and the level of metal accumulation in moss gametophytes, samples of plant material collected in the area of Stryiska Street with large industrial and transport loads were compared with the results of studies of mosses collected in Stryisky Park (territory not subject to anthropogenic impact). According to the results obtained, the concentrations of individual metals reached significantly higher values in samples of bryophytes from Stryiska Street than in samples from the territory of Stryisky Park. The relationship between the concentration of metals in gametophytes and the area of moss collecting was clearly manifested in P. polyantha moss. Namely, the concentrations of Mn, Zn, and Pb in P. polyantha sampled near Stryiska Street exceeded those found in samples from Stryisky Park by 2.3 (p<0.01), 3.0 (p<0.001) and 1.91 times (p<0.05), respectively. A similar dynamics of metal concentrations was found in two other species of bryophytes. However, differences in the metal content in gametophytes of R. murale and S. apocarpum collected in areas with different levels of anthropogenic load were less pronounced than in P. polyantha. Conclusions. Analysis of Cr, Mn, Ni, Pb, and Zn concentrations in the gametophytes of Pylaisia polyantha, Rhynchostegium murale, and Schistidium apocarpum indicates differences in the intensity of metal accumulation between moss species. Due to the higher responsiveness of Pylaisia polyantha to air pollution and a more pronounced association between the accumulation of metals in its gametophyte and anthropogenic stress in the territory compared to other mosses, this bryophyte could potentially be used as a biological monitor for assessing and monitoring air quality in large industrial cities.

Tags:

mosses, bryophytes, Pylaisia polyantha, Rhynchostegium murale, Schistidium apocarpum, metals, biomonitoring, biomonitor species, atmosphere, urban ecosystems

Bibliography:

  1. Chakrabortty S, Paratkar GT. Biomonitoring of trace element air pollution using mosses. Aerosol and Air Quality Research. 2006;6(3):247-58.
  2. Dorne JL, Kass GE, Bordajandi LR, Amzal B, Bertelsen U, Castoldi AG, et al. Human risk assessment of heavy metals: principles and applications. Met Ions Life Sci. 2011;8:27-60.
  3. Antonyak HL, Mamchur ZI, Pershyn OI, Bubys OE, Kordosh TV. Biolohichna dostupnistʹ metaliv ta yikh akumulyatsiya v tkanynakh roslyn. Visnyk problem biolohiyi i medytsyny. 2015;3(2):11-6. [in Ukrainian].
  4. Järup L. Hazards of heavy metal contamination. Br Med Bull. 2003;68(1):167-82.
  5. Tessier L, Boisvert J. Performance of terrestrial bryophytes as biomonitors of atmospheric pollution. A review. Toxicol Environ Chem. 1999;68(1-2):179-220.
  6. Abdullah MZ, Ismail RA, Mahammad NI. Statistical analysis of heavy metal concentration in moss and soil as indicator of industrial pollution. International Journal of Science, Environment and Technology. 2014;3(3):762-75.
  7.  Macedo-Miranda G, Avila-Perez P, Gil-Vargas P, Zarazua G, Sanchez-Meza JC, Zepeda-Gomez C, et al. Accumulation of heavy metals in mosses: a biomonitoring study. SpringerPlus. 2016;5(1):715.
  8. Boyko MF. Cheklist mokhopodibnykh Ukrayiny (taksonomichnyy ohlyad, nadvydovi taksony). Chornomorsʹkyy botanichnyy zhurnal. 2008;4(2):151-60. [in Ukrainian].
  9. Boyko MF. Kharakterystyka mokhopodibnykh yak indykatoriv stanu navkolyshnʹoho seredovyshcha. Chornomorsʹkyy botanichnyy zhurnal. 2010;6(1):35-40. [in Ukrainian].
  10. Mamchur ZI. Urbanofilʹni epifitni mokhy mista Lʹvova. Visnyk Lʹvivsʹkoho universytetu. Seriya biolohichna. 2010;54:115-22. [in Ukrainian].
  11.  Virchenko VM. Mokhopodibni pryrodno-zapovidnykh terytoriy Ukrayinsʹkoho Polissya. Kyyiv: TOV NVP “Interservis”; 2014. 224 s. [in Ukrainian].
  12. Hapon SV. Mokhopodibni ta mokhova roslynnistʹ zakaznykiv Lisostepu Ukrayiny. Visnyk problem biolohiyi i medytsyny. 2016;2(3):66-9. [in Ukrainian].
  13. Hlukhov OZ, Mashtaler OV. Brioindykatsiya tekhnohennoho zabrudnennya navkolyshnʹoho seredovyshcha pivdennoho skhodu Ukrayiny. D.: Veber; 2007. s. 132-53. [in Ukrainian].
  14. Komisar OS, Boyko MF. Vazhki metaly v hametofitakh mokhu Vryum argenteum Hedw. ta gruntakh na terytoriyakh zavodiv mista Mykolayeva (Ukrayina). Chornomorsʹkyy botanichnyy zhurnal. 2013;9(4):533-41. [in Ukrainian].
  15. Karpinetsʹ L, Lobachevsʹka O, Baranov V. Vplyv briofitnoho pokryvu na umovy edafotopu porodnykh vidvaliv Chervonohradsʹkoho hirnychopromyslovoho kompleksu. Visnyk Lʹvivsʹkoho universytetu. Seriya biolohichna. 2014;65:255-65. [in Ukrainian].
  16. Boyko MF, redaktor. Zahorodnyuk NV, Shvetsʹ VV. Brioflora landshaftiv pidpryyemstv mista Khersonu. Metoda (Nauka i metodyka). Zbirka naukovykh i metodychnykh pratsʹ. Kherson: FOP Vyshemyrsʹkyy VS; 2018. s. 17-20. [in Ukrainian].
  17. Polishchuk O, Antonyak H. Akumulyatsiya metaliv u roslynakh mokhu Pylaisia polyantha (Hedw.) Schimp. na terytoriyi mista Lʹvova. IV Mizhnarodna naukovo-praktychna konferentsiya «Suchasnyy stan ta perspektyvy rozvytku bio- i ahrotsenoziv v umovakh postiynoho tekhnohennoho zabrudnennya» 24–26 zhovtnya 2018, Drohobych. 2018. s. 85-9. [in Ukrainian].
  18. Degtjarenko P, Marmor L, Randlane T. Changes in bryophyte and lichen communities on Scots pines along an alkaline dust pollution gradient. Environ Sci Pollut Res Int. 2016;23(17):17413-25.
  19. Nazaruk MM. Lʹviv u XX stolitti: sotsialʹno-ekolohichnyy analiz. Lʹviv: Ukrayinsʹka akademiya drukarstva, Vydavnychyy tsentr LNU im. Ivana Franka; 2008. 348 s. [in Ukrainian].
  20. Stebel A. Contribution to the bryoflora of the Wiśnickie Foothills (Western Carpathians, Poland). Acta Mus Siles Sci Natur. 2015;64:131-9.
  21. Plášek V. Mszaki w lasach. Przewodnik terenowy dla leśników i taksatorów. Warszawa: Centrum Informacyjne Lasów Państwowych, 2013. 130 s.
  22. Vellak K, Ingerpuu N, Leis M, Ehrlich L. Annotated checklist of Estonian bryophytes. Folia Cryptog. Estonica, Fasc. 2015;52:109-27.
  23. Eymann J, Degreef J, Häuser Ch, Monje JC, Samyn Y, Spiegel DV, editors. Vanderpoorten A, Papp B, Gradstein R. Sampling of bryophytes. Chapter 13. In: Manual on Field Recording Techniques and Protocols for All Taxa Biodiversity Inventories. 2010. p. 331-45.
  24. Ogunkunle CO, Ziyath AM, Rufai SS, Fatoba PO. Surrogate approach to determine heavy metal loads in a moss species – Barbula lambaranensis. Journal of King Saud University – Science. 2016;28(2):193-7.
  25. Welham SJ, Gezan SA, Clark SJ, Mead A. Statistical Methods in Biology. Design and Analysis of Experiments and Regression. Taylor & Francis Group, LLC; 2015. 568 p

Publication of the article:

«Bulletin of problems biology and medicine» Issue 3 (152), 2019 year, 58-62 pages, index UDK 582.32: 574.21

DOI: