Kuliesh D. V., Stashenko K. V., Narazhayko L. F., Gritsenko V. P., Zakashun T. E.

RESEARCH OF BIODEGRADATION AND BIOCOMPATIBILITY OF POLYMERIC FILM MATERIALS WITH LYSOZYME


About the author:

Kuliesh D. V., Stashenko K. V., Narazhayko L. F., Gritsenko V. P., Zakashun T. E.

Heading:

CLINICAL AND EXPERIMENTAL MEDICINE

Type of article:

Scentific article

Annotation:

The synthesis of new biocompatible polymeric materials and the creation of medical products on their basis is a promising area of research. Main requirements for such materials are biocompatibility, lack of toxicity and their effective functioning throughout the lifetime. In our opinion, polyurethaneurea may be promising polymer materials for medical use. The aim of the study was to study biodegradation and biocompatibility of hydrophilic polyurethaneurea with lysozyme in vitro and in vivo. Biodegradation and biocompatibility study of hydrophilic film materials based on polyurethaneurea with lysozyme was conducted. It was established that the process of biodegradation of test samples in the model environment was accompanied by the structuring of the polymer matrix due to the redistribution of intermolecular hydrogen bonds. It was established that the culture of fibroblasts with the extract from the sample of polyurethaneurea with lysozyme was in a stable growth stage, the cells were located more compactly, forming the grains, the areas of growth zones were much wider than the control and with the extract from the sample of polyurethaneurea without lysozyme, indicating their non-toxicity. It was shown that lysozyme in the polyurethaneurea led to the activation of the process of biodegradation of test samples already in the early stages of the study. Thus, investigated polymeric materials with biological activity can be promising materials for use as coatings that contribute to the healing of wounds and burns.

Tags:

polyurethane urea, lysozyme, biodegradation, tissue culture, implantation, biocompatibility.

Bibliography:

  1. Galatenko NA, Rozhnova RA. Biologicheski aktivnyye polimernyye materialy dlya meditsiny. Kiív: Naukova dumka; 2013. 210 s. [in Russian]. ̈
  2. Shal’nova LI, Lavrov NA, Sel’kov SA, Platonov VG, Zubritskaya NG, Ivanova TV, i dr. Osobennosti sinteza biologicheski aktivnykh karboksilsoderzhashchikh (so)polimerov vinilovogo i akrilovogo ryada. Khimiya i khimicheskaya tekhnologiya vysokomolekulyarnykh soyedineniy. Izvestiya SPbGTI (TU). 2013;18(44):56-62. [in Russian].
  3. Shtil’man MI. Polimery mediko-biologicheskogo naznacheniya. Moskva: IKTS «Akademkniga»; 2006. 400 s. [in Russian].
  4. Shal’nova LI, Lavrov NA, Nikolayev AF. O vozmozhnosti prognozirovaniya prolongatsii farmakologicheskogo deystviya polimernykh biologicheski aktivnykh veshchestv. Plasticheskiye massy. 2011;9:6-11. [in Russian].
  5. Kutyreva MP, Babkina SS, Atanasyan TK. Novyye materialy: biologicheski aktivnyye giperrazvetvlennyye polimery i ikh metallokompleksy. Moskva: MPGU; 2014. 136 s. [in Russian].
  6. Raygorodskiy IM, Kolganova IV, Kirilin AD, Kopylov VM, Matyushin GA. Gazodiffuzionnyye membrannyye materialy dlya oksigenatsii krovi i «iskusstvennoy kozhi». Kriticheskiye tekhnologii. Membrany. 2002;14:18-28. [in Russian].
  7. Braatz JA, Kehr CL. Contact lenses based on biocompatible polyurethane and polyurea-urethane hydrated polymers. 07/312331; appl. 16.02.1989; publ. 12.12.1989. Pat. 4886866 USA.
  8. Zdrahala R, Strand M. Fluorinated polyetherurethanes and medical devices therefrom. 325476; appl. 20.03.89; publ. 19.06.1990. Pat. 4935480 USA.
  9. Takakura T, Kato M, Yamabe M. Synthesis and characterization of fluorinecontaining segmented poly(urethane-urea)s. Macromolecular Chemistry. 1990;3(191):625-32.
  10. Laschke M, Strohe A, Scheuer C, Eglin D, Verrier S, Alini M, et al. In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering. Acta Biomaterialia. 2009;6(5):1991-2001.
  11. McBane JE, Sharifpoor S, Cai K, Labow RS, Santerre JP. Biodegradation and in vivo biocompatibility of a degradable, polar/hydrophobic/ionic polyurethane for tissue engineering applications. Biomaterials. 2011:26(32):6034-44.
  12. Hrehirchak NM, Antonyuk MM. Immobilizovani fermenty i klityny v biotekhnolohiyi. Konspekt lektsiy. Kyyiv: NUKHT; 2011. 59 s. [in Ukrainian].
  13. Zhang X, Sun M, Wang QY. Screening condition for lysozyme production of marine bacteria S-12-86. J. Fishery Sci. China. 2007;14(3):425-9.
  14. Stashenko KV, Rudenchyk TV, Rozhnova RA, Kiselʹova TO. Rozrobka kompozytsiynykh materialiv na osnovi poliuretansechovyn z frahmentamy kopolimeru N-vinilpirolidonu z vinilovym spyrtom ta lizotsymom. Voprosy khymyy y khymycheskoy tekhnolohyy. 2018;2:115-21. [in Ukrainian].
  15. Lebedyev YeV, Konstantinov YuB, Halatenko NA. Toksykoloho-hihiyenichni ta doklinichni doslidzhennya polimernykh materialiv i vyrobiv na yikh osnovi medychnoho pryznachennya. Kyyiv: Naukova dumka; 2009. 98 s. [in Ukrainian].
  16. European convention for the protection of vertebrate animals used for experimental and other scientific purposes. Strasbourg: Council of Europe, Strasbourg; 1986. 53 p.
  17. Sarkisov DS, Petrova YuL. Mikroskopicheskaya tekhnika. Moskva: Meditsina; 1996. 542 s. [in Russian].

Publication of the article:

«Bulletin of problems biology and medicine» Issue 3 (152), 2019 year, 131-137 pages, index UDK 678.664; 57.086.83; 616-001.46

DOI: