Zagoruiko G. E., Martsinovsky V. P., Zagoruiko Yu. V., Filatova V. L., Shmulich O. V.

REGULARITIES OF THE DEVELOPMENT OF THE MITOCHONDRIAL APPARATUS AND EXTERNAL MITOCHONDRIAL MEMBRANES IN THE 2nd CMC COMPLEX (LV+ISH) OF WISTAR RATS


About the author:

Zagoruiko G. E., Martsinovsky V. P., Zagoruiko Yu. V., Filatova V. L., Shmulich O. V.

Heading:

BIOLOGY

Type of article:

Scentific article

Annotation:

Within 45 days in the 2nd-CMC there is a continuous increase in the absolute (Vma), relative (Vvma) MA volumes, the total surface area ƩSnmm and the average volume of one MX (∆Vmt). The graphs of the growth of Vma, ƩSnmm and ∆Vmt values have the form of an S-like curve, which indicates the presence of three consecutive periods of monotonic development of MA and its components. In the process of postnatal morphogenesis of MA in the 2n-CMC, the biological law “division ↔ fusion” is realized. The essence of the law is that the ontogenetic regulation of the MT number in the 2n-CMC is carried out by two biological mechanisms: the division of MT, which leads to an increase in the number of organelles in the CMC, and the fusion of MT, as a result of which the number of organelles decreases, but the volume of each MT increases. The expediency of “fusion ↔ division” of MC in the process of ontogenesis of CMC is as follows. During division, the number of MT increases and, at the same time, the number of copies of mt-DNA in 2n-CMC increases. Intensive division of MC occurs in the time interval (n / p -15) days. When MT fusion occurs, duplication of mt-DNA copies occurs in each MT, which was formed after the fusion of two previous organelles. The doubled content of mx-DNA in MT 2n-CMC correlates with an increase in the number of cristae in these organelles and the area of NMM. The fusion of MT is observed in the time interval (15-30) days. This is a period of intensive growth of MA 2n-CMC, which coincides with the third period of doubling the body weight of white rats and the activation of their motor activity.

Tags:

postnatal cardiomyogenesis of the 2n-CMC, mitochondrial apparatus, mitochondrial division and fusion.

Bibliography:

  1. Mazunin IO, Volodko NV. Mitohondrii: zhizn v kletke i ee posledstviya. Priroda. 2010;10:3-14. [in Russian].
  2. Vekshin NL. Biofizika mitohondrij. OOO Foton vek Puschino; 2019. 264 s. [in Russian].
  3. Ong S-B, Hausenloy DJ. Mitochondrial morphology and cardiovascular disease. J. Cardiovasc. Res. 2010;88:16-29.
  4. Holmuhamedov EL. Rol mitohondrij v obespechenii normalnoj zhiznedeyatelnosti i vyzhivaniya kletok mlekopitayushchih [dissertatsiya]. Biofizika. Pushchino; 2009. 160 s. [in Russian].
  5. Skulachev VP, Bogachev AV, Kasparinskij FO. Membrannaya bioenergetika, izd. MGU. Moskva; 2010. 368 s. [in Russian].
  6. Murakov SV, Vospelnikov ND. Mitohondrialnye megapory v zhizni kletki. Vopr. biol., med. i farm. himii. 2006;2:44-50. [in Russian].
  7. Naryjnaıa NV, Maslov LN, Lıshmanov IB. Pora, ızmenıaıýaıa pronıtsaemost mıtohondrıı – regylıator ystoıchıvostı serdtsa k deıstvııy reperfyzıı. Russian J. of Physiol. 2018;104(3):272-90. [in Russian].
  8. Orlova DD, Tribulovich VG, Garabadzhiu AV. Rol mitohondrialnogo morfogeneza v regulyacii apoptoza. Citologiya. 2015;57(3):184-90. [in Russian].
  9. Lukjanova LD. Signalnaja rol mitohondrij pri adaptatsii k gipoksii. Fіzіol. zhurn. 2013;59(6):141-54. [in Russian].
  10. Lukjanova LD. Signalnaja mehanizmu hipoksii. М.: RAN. 2019. 215 s. [in Russian].
  11. Chan DC. Mitocondrial Fusion and Fission in Mammals. Ann. Rev. Cell Dev. Biol. 2006;22:79-99.
  12. Patryshev MV, Mazýnın IO, Vınogradova EN. Slııanıe ı delenıe mıtohondrıı. Obzor. Bıohımııa. 2015;80(11):1745-54. [in Russian].
  13. Zagoruiko GE, Marcinovskij VP, Zagoruiko YuV, Filatova VL, Shmulich OV. Kinetika razvitiya mitohondrioma i dinamika chislennosti mitohondrij v kardiomiocitah kompleksa (LZH+MZHP) v rannem postnatal’nom ontogeneze krys Wistar. Visnik probl. biol. i med. 2020;1(155):67-72. [in Russian].
  14. Panov AV. Prakticheskaya mitohondriologiya. Novosibirsk: NGMU; 2015. 239 s. [in Russian].
  15. Ryan M Whitaker, Daniel Corum, Craig C Beeson, Rick G Schnellmann. Mitochondrial Biogenesis as a Pharmacological Target: A New Approach to Acute and Chronic Diseases. Аnn Rev Pharmacol Toxicol. 2016;56:229-49.
  16. Díaz-Juárez J, Suarez J. Mitochondrial dynamics and cardiac function in metabolic disorders. J. Metabolic Synd. 2017;10. Available from: https://www.omicsgroup.org/journals/mitochondrial-dynamics-and-cardiac-function-in-metabolic-disorders-2167-0943-1000e121.pdf
  17. Zagoruiko GE, Zagoruiko YuV. Morfometricheskij analiz prenatalnogo i postnatalnogo sozrevaniya kardiomiocitov krys. Visnik probl. biol. i med. 2017;2(136):290-4. [in Russian].
  18. Avtandilov GG. Osnovy kolichestvennoy patologicheskoy anatomii. M.: Meditsina; 2002. 240 s. [in Russian].
  19. Zagoruiko GE, Skidan IG. Problemy i perspektivy razvitiya metodov kolichestvennogo analiza raktal’nyh biologicheskih struktur. Visnik probl. biol. i med. 2007;2:102-7. [in Russian].

Publication of the article:

«Bulletin of problems biology and medicine» Issue 3 (157), 2020 year, 44-49 pages, index UDK 576.311. 347 : 611.127-018

DOI: