REGULARITIES OF THE DEVELOPMENT OF THE MITOCHONDRIAL APPARATUS AND EXTERNAL MITOCHONDRIAL MEMBRANES IN THE 2nd CMC COMPLEX (LV+ISH) OF WISTAR RATS
About the author:
Zagoruiko G. E., Martsinovsky V. P., Zagoruiko Yu. V., Filatova V. L., Shmulich O. V.
Heading:
BIOLOGY
Type of article:
Scentific article
Annotation:
Within 45 days in the 2nd-CMC there is a continuous increase in the absolute (Vma), relative (Vvma) MA volumes, the total surface area ƩSnmm and the average volume of one MX (∆Vmt). The graphs of the growth of Vma, ƩSnmm and ∆Vmt values have the form of an S-like curve, which indicates the presence of three consecutive periods of monotonic development of MA and its components. In the process of postnatal morphogenesis of MA in the 2n-CMC, the biological law “division ↔ fusion” is realized. The essence of the law is that the ontogenetic regulation of the MT number in the 2n-CMC is carried out by two biological mechanisms: the division of MT, which leads to an increase in the number of organelles in the CMC, and the fusion of MT, as a result of which the number of organelles decreases, but the volume of each MT increases. The expediency of “fusion ↔ division” of MC in the process of ontogenesis of CMC is as follows. During division, the number of MT increases and, at the same time, the number of copies of mt-DNA in 2n-CMC increases. Intensive division of MC occurs in the time interval (n / p -15) days. When MT fusion occurs, duplication of mt-DNA copies occurs in each MT, which was formed after the fusion of two previous organelles. The doubled content of mx-DNA in MT 2n-CMC correlates with an increase in the number of cristae in these organelles and the area of NMM. The fusion of MT is observed in the time interval (15-30) days. This is a period of intensive growth of MA 2n-CMC, which coincides with the third period of doubling the body weight of white rats and the activation of their motor activity.
Tags:
postnatal cardiomyogenesis of the 2n-CMC, mitochondrial apparatus, mitochondrial division and fusion.
Bibliography:
- Mazunin IO, Volodko NV. Mitohondrii: zhizn v kletke i ee posledstviya. Priroda. 2010;10:3-14. [in Russian].
- Vekshin NL. Biofizika mitohondrij. OOO Foton vek Puschino; 2019. 264 s. [in Russian].
- Ong S-B, Hausenloy DJ. Mitochondrial morphology and cardiovascular disease. J. Cardiovasc. Res. 2010;88:16-29.
- Holmuhamedov EL. Rol mitohondrij v obespechenii normalnoj zhiznedeyatelnosti i vyzhivaniya kletok mlekopitayushchih [dissertatsiya]. Biofizika. Pushchino; 2009. 160 s. [in Russian].
- Skulachev VP, Bogachev AV, Kasparinskij FO. Membrannaya bioenergetika, izd. MGU. Moskva; 2010. 368 s. [in Russian].
- Murakov SV, Vospelnikov ND. Mitohondrialnye megapory v zhizni kletki. Vopr. biol., med. i farm. himii. 2006;2:44-50. [in Russian].
- Naryjnaıa NV, Maslov LN, Lıshmanov IB. Pora, ızmenıaıýaıa pronıtsaemost mıtohondrıı – regylıator ystoıchıvostı serdtsa k deıstvııy reperfyzıı. Russian J. of Physiol. 2018;104(3):272-90. [in Russian].
- Orlova DD, Tribulovich VG, Garabadzhiu AV. Rol mitohondrialnogo morfogeneza v regulyacii apoptoza. Citologiya. 2015;57(3):184-90. [in Russian].
- Lukjanova LD. Signalnaja rol mitohondrij pri adaptatsii k gipoksii. Fіzіol. zhurn. 2013;59(6):141-54. [in Russian].
- Lukjanova LD. Signalnaja mehanizmu hipoksii. М.: RAN. 2019. 215 s. [in Russian].
- Chan DC. Mitocondrial Fusion and Fission in Mammals. Ann. Rev. Cell Dev. Biol. 2006;22:79-99.
- Patryshev MV, Mazýnın IO, Vınogradova EN. Slııanıe ı delenıe mıtohondrıı. Obzor. Bıohımııa. 2015;80(11):1745-54. [in Russian].
- Zagoruiko GE, Marcinovskij VP, Zagoruiko YuV, Filatova VL, Shmulich OV. Kinetika razvitiya mitohondrioma i dinamika chislennosti mitohondrij v kardiomiocitah kompleksa (LZH+MZHP) v rannem postnatal’nom ontogeneze krys Wistar. Visnik probl. biol. i med. 2020;1(155):67-72. [in Russian].
- Panov AV. Prakticheskaya mitohondriologiya. Novosibirsk: NGMU; 2015. 239 s. [in Russian].
- Ryan M Whitaker, Daniel Corum, Craig C Beeson, Rick G Schnellmann. Mitochondrial Biogenesis as a Pharmacological Target: A New Approach to Acute and Chronic Diseases. Аnn Rev Pharmacol Toxicol. 2016;56:229-49.
- Díaz-Juárez J, Suarez J. Mitochondrial dynamics and cardiac function in metabolic disorders. J. Metabolic Synd. 2017;10. Available from: https://www.omicsgroup.org/journals/mitochondrial-dynamics-and-cardiac-function-in-metabolic-disorders-2167-0943-1000e121.pdf
- Zagoruiko GE, Zagoruiko YuV. Morfometricheskij analiz prenatalnogo i postnatalnogo sozrevaniya kardiomiocitov krys. Visnik probl. biol. i med. 2017;2(136):290-4. [in Russian].
- Avtandilov GG. Osnovy kolichestvennoy patologicheskoy anatomii. M.: Meditsina; 2002. 240 s. [in Russian].
- Zagoruiko GE, Skidan IG. Problemy i perspektivy razvitiya metodov kolichestvennogo analiza raktal’nyh biologicheskih struktur. Visnik probl. biol. i med. 2007;2:102-7. [in Russian].
Publication of the article:
«Bulletin of problems biology and medicine» Issue 3 (157), 2020 year, 44-49 pages, index UDK 576.311. 347 : 611.127-018