Ruban Y. V., Shavanova K. E., Samofalova D. O., Nikonov S. B., Pareniuk O. Y


About the author:

Ruban Y. V., Shavanova K. E., Samofalova D. O., Nikonov S. B., Pareniuk O. Y



Type of article:

Scentific article


Points of temporary localization of radioactive waste (PTLRW) are areas adjacent to the Chоrnobyl NPP where trenches and burrows for radioactive waste localization were created during the priority measures to eliminate the accident. The aim of the presented work was to compare the structure of the microbial community on PTLRW and areas contaminated with radionuclides. The largest number of sequences (relative abundance > 1%) in samples from both PTLRV and radionuclide-contaminated ecosystems was observed of the Phylum: Proteobacteria, Actinobacteria, Acidobacteria, Planctomycetes, Verrucomicrobia, Gemmatimonadetes, Chloroflexi and Bacteroidetes. The dominant Order (relative abundance > 5%) were: Rhizobiales, Rhodospirillales, Actinomycetales, Solirubrobacterales, Acidimicrobiales Acidobacteriales, Solibacterales and Ellin6513. According to Shannon and Simpson, the soil with the highest biodiversity was in the soil taken from the surface of the trench in the «Red Forest». The lowest Chao1 index Shannon and Simpson Index had soil from outside of the trench in the «Red Forest». Comparing the two presented ecotypes, a significant difference was observed in the amount of the Proteobacteria Phylum, towards Actinobacteria, and Acidobacteria. Also, samples from the territory of the trench “Red Forest” had the largest number of identified Species. Therefore, we can conclude that there are processes of ecosystem formation. Namely, they are affected by high absorbed doses and additional nutrition, represented by radionuclide contamination and wood residues.


microbiome, radionuclides, Chоrnobyl Exclusion Zone, microorganisms


  1. Grimm V, Wissel C. Babel, or the ecological stability discussions: An inventory and analysis of terminology and a guide for avoiding confusion [Internet]. 1997;109:323-34. Available from:
  2. Allison G. The influence of species diversity and stress intensity on community resistance and resilience. Ecol Monogr [Internet]. 2004 Jan 1;74(1):117-34. Available from:
  3. Taormina B, Bald J, Want A, Thouzeau G, Lejart M, Desroy N, et al. A review of potential impacts of submarine power cables on the marine environment: Knowledge gaps, recommendations and future directions. Renewable and Sustainable Energy Reviews. Elsevier Ltd. 2018;96:380-91. Available from:
  4. Gosset A, Ferro Y, Durrieu C. Methods for evaluating the pollution impact of urban wet weather discharges on biocenosis: A review. Water Research. Elsevier Ltd. 2016;89:330-54. Available from:
  5. Luo C, Rodriguez-R LM, Johnston ER, Wu L, Cheng L, Xue K, et al. Soil microbial community responses to a decade of warming as revealed by comparative metagenomics. Appl Environ Microbiol. 2014 Mar;80(5):1777-86. DOI: 10.1128/AEM.03712-13
  6. Derzhavna inspektsiia yadernoho rehuliuvannia Ukrainy [Internet]. Dostupno: [in Ukrainian].
  7. Paskevich S. Red forest: description of radioactive dead ecosystem Chernobyl, Pripyat, ChNPP exclusion zone [Internet]. Available from:
  8. Gudkov ІM. Radiobiolohiia. 2016. 485 s. [in Ukrainian].
  9. Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms [Internet]. Plant and Soil. Springer. 2009;321:305-39. Available from: s11104-009-9895-2
  10. Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S. The role of soil microorganisms in plant mineral nutrition – current knowledge and future directions. Front Plant Sci [Internet]. 2017 Sep 19;8. Available from: /pmc/articles/PMC5610682/?report=abstract
  11. Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms [Internet]. FEMS Microbiology Reviews. 2013;37:634-63. Available from: https://pubmed.ncbi.nlm.nih. gov/23790204/
  12. Gerhard F, redactor. Metody obshhej bakteriologii. Moskva: Mir; 1983. 536 s. [in Russian].
  13. Kashparov VA, Lundin SM, Homutinin JuV, Novinskij SP, Levchuk SE, Joshhenko VI, i dr. Radioaktivnoe zagrjaznenie 30-km zony ChAES. 1999. [in Russian].
  14. Sagova-Mareckova M, Cermak L, Novotna J, Plhackova K, Forstova J, Kopecky J. Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl Environ Microbiol. 2008 May;74(9):2902-7.
  15. Algina J, Olejnik S. Conducting power analyses for ANOVA and ANCOVA in between-subjects designs. Eval Health Prof. 2003 Sep;26(3):288-314. Available from:
  16. The international Chernobyl project technical report assessment of radiological consequences and evaluation of protective measures report by an international advisory committee. Vienna; 1991. Available from: web.pdf
  17. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. Package «vegan» Title Community Ecology Package. 2019.
  18. Kashparov V, Levchuk S, Zhurba M, Protsak V, Khomutinin Y, Beresford NA, et al. Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone. Earth Syst Sci Data [Internet]. 2018 Feb 26;10(1):339-53. Available from: https://essd.copernicus. org/articles/10/339/2018/
  19. Kashparov V, Yoschenko V, Levchuk S, Bugai D, Van Meir N, Simonucci C, et al. Radionuclide migration in the experimental polygon of the Red Forest waste site in the Chernobyl zone – Part 1: Characterization of the waste trench, fuel particle transformation processes in soils, biogenic fluxes and effects on biota. Appl Geochemistry. 2012 Jul 1;27(7):1348-58. Available from: apgeochem.2011.11.004
  20. Pareniuk OJ, Moshynets OV, Tytova LV, Levchuk SE. Yakisnyǐ sklad dominuiuchykh form mikroorhanizmiv, vydilenykh z zabrudnenykh radionuklidamy gruntiv, ta ikh zdatnist′ do akumuliatsii 137Cs. Microbiol J. 2013;75(1):33-40. [in Ukrainian].
  21. Bhatti AA, Haq S, Bhat RA. Actinomycetes benefaction role in soil and plant health. Microb Pathog [Internet]. 2017 Oct 1;111:458-67. Available from:
  22. Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE. The ecology of Acidobacteria: Moving beyond genes and genomes [Internet]. Frontiers in Microbiology. 2016;7. Available from: /pmc/articles/PMC4885859/?report=abstract
  23. Pielou EC. Ecological Diversity [Internet]. New York: John Wiley and Sons; 1975. 165 p. Available from: reference/151613
  24. Pareniuk O, Simutin I, Samofalova D. Vyznachennia osnovnykh metryk riznomanittia mikrobiomiv zabrudnenykh radionuklidamy hruntiv. Bìoresursi ì Prir [Internet]. 2018 Dec 29;10(5-6):77-81. Dostupno: [in Ukrainian].
  25. Dong X, Lv L, Wang W, Liu Y, Yin C, Xu Q, et al. Differences in Distribution of Potassium-Solubilizing Bacteria in Forest and Plantation Soils in Myanmar. Int J Environ Res Public Health. 2019 Feb;16(5):700. Available from:
  26. Epelde L, Lanzén A, Martín I, Virgel S, Mijangos I, Besga G, et al. The microbiota of technosols resembles that of a nearby forest soil three years after their establishment. Chemosphere. 2019 Apr;220:600-10. Available from:
  27. Theodorakopoulos N, Février L, Barakat M, Ortet P, Christen R, Piette L, et al. Soil prokaryotic communities in Chernobyl waste disposal trench T22 are modulated by organic matter and radionuclide contamination. FEMS Microbiol Ecol. 2017 Aug;93(8). Available from: https://
  28. Chapon V, Piette L, Vesvres M-H, Coppin F, Marrec C Le, Christen R, et al. Microbial diversity in contaminated soils along the T22 trench of the Chernobyl experimental platform. Appl Geochemistry [Internet]. 2012 Jul;27(7):1375-83. Available from: apgeochem.2011.08.011

Publication of the article:

«Bulletin of problems biology and medicine» Issue 3 (157), 2020 year, 83-88 pages, index UDK 57.083.18::579.262:504.054::620.267