Filenko B. M.

A MODERN VIEW OF THE ETHIOLOGY, PATHOGENESIS, PATOMORPHOLOGY OF MYASTENIA: LITERATURE REVIEW AND CASE REPORT


About the author:

Filenko B. M.

Heading:

LITERATURE REVIEWS

Type of article:

Scentific article

Annotation:

Myasthenia gravis is a rare disease, but it is the most common neuromuscular disorder that has a high rate of disability and mortality. Therefore, myasthenia remains an important medical and social problem that needs to be thoroughly studied. Hereditary factors associated with the human leukocyte antigen gene play a role in the pathogenesis of myasthenia gravis. Miasthenia is a classic example of a type II hypersensitivity reaction. However, its pathogenesis depends on the form of the disease, characterized by the formation of antibodies of different subclasses of IgG for which the targets are the components of the receptor apparatus of the synapse. Identification of the source of autoantibodies is important, as antibody-producing cells are the main therapeutic targets. Antibodies are produced by antigen-specific subgroups of B-cells, that are short-and long-lived plasma cells. T-cell assistance is required for B-lymphocyte activation, so myasthenia is classified as B-cell-mediated T-cell-dependent autoimmune disease. Acetylcholine-myasthenia patients often have thymic pathology, which is confirmed by clinical improvement in acetylcholine-myasthenia patients after thymectomy. Thymus abnormalities are not detected in patients with muscle-specific kinase-myasthenia and no clinical benefit of thymectomy is observed. The role of the thymus in lipoprotein-specific protein 4-myasthenia is not established, only in the presence of additional antibodies to musclespecific kinase or lipoprotein-specific protein 4 can be observed thymus hyperplasia. This form of the disease is predominantly found in women, characterized by general muscular weakness. There are not enough morphological criteria for the diagnosis of myasthenia gravis. Therefore, the diagnosis of this disease must take into account the etiological, clinical and genetic factors. For complete morphological diagnostics it is necessary to use light-optical, histochemical, enzymohistochemical, immunomorphological and electron-microscopic methods of investigation. Here is an example of a lethal case of generalized myasthenia gravis with early onset, secondary muscle weakness in the upper and lower extremities with concomitant glomerulonephritis, discussing the pathogenetic features of these diseases. Myasthenia is rarely associated with nephropathy. The mechanism of nephrotic syndrome development is an imbalance between T-helper classes 1 and 2. In myasthenia, T-cell dysfunction leads to the production of lymphokines, which increase the permeability of the glomerular basement membrane. Doctors should look for a potential cause, such as myasthenia gravis and other thymus-related diseases, diagnosing glomerulonephritis with minimal changes in the adult.

Tags:

myasthenia gravis, glomerulonephritis, pathogenesis, thymoma, thymic hyperplasia.

Bibliography:

  1. Protsenko ES, Remneva NA. Patolohycheskaia anatomyia neopukholevyh yzmenenyi vylochkovoi zhelezy pry heneralyzovanoi myastenyy. Kharkov: KhNU ymeny V.N. Karazyna; 2010. 148 s. [in Russiаn].
  2. Hehir MK, Silvestri NJ. Generalized Myasthenia Gravis: Classification, Clinical Presentation, Natural History, and Epidemiology. Neurol Clin. 2018;36(2):253-60.
  3. Kalbus OI. Medyko-statystychni ta epidemiolohichni kharakterystyky poshyrenosti miastenii v Ukraini. Ukrainskyi medychnyi chasopys. 2019;4(132):1-4. [in Ukrainian].
  4. Trouth AJ, Dabi A, Solieman N, Kurukumbi M, Kalyanam J. Myasthenia Gravis: A Review. Autoimmune Dis. 2012;2012:874680.
  5. Christensen PB, Jensen TS, Tsiropoulos I, Sørensenc T, Kjærc M, Højer-Pedersenc E, et al. Mortality and survival in myasthenia gravis: a Danish population based study. Journal of Neurology, Neurosurgery & Psychiatry. 1998;64:78-83.
  6. Hansen JS, Danielsen DH, Somnier FE, Frøslev T, Jakobsen J, Johnsen SP, et al. Mortality in myasthenia gravis: A nationwide population-based follow-up study in Denmark. Muscle Nerve. 2016;53(1):73-7.
  7. Gilhus NE, Owe JF, Hoff JM, Romi F, Skele GO, Aarli JA. Myasthenia gravis: a review of available treatment approaches. Autoimmune Diseases. 2011;10:1-6.
  8. Gilhus NE. Myasthenia gravis. N Engl J Med. 2016;375:2570-81.
  9. Gilhus NE, Skeie GO, Romi F, Lazaridis K, Zisimopoulou P, Tzartos S. Myasthenia gravis – autoantibody characteristics and their implications for therapy. Nat Rev Neurol. 2016;12:259-68.
  10. Salvado M, Canela M, Ponseti JM, Lorenzo L, Garcia C, Cazorla S, et al. Study of the prevalence of familial autoimmune myasthenia gravis in a Spanish cohort. J Neurol Sci. 2016;360:110-4.
  11. Ramanujam R, Pirskanen R, Ramanujam S, Hammarström L. Utilizing twins concordance rates to infer the predisposition to myasthenia gravis. Twin Res Hum Genet. 2011;14:129-36.
  12. Saruhan-Direskeneli G, Hughes T, Yilmaz V, Durmus H, Adler A, Alahgholi-Hajibehzad M, et al. Genetic heterogeneity within the HLA region in three distinct clinical subgroups of myasthenia gravis. Clin Immunol. 2016;16(6-167):81-8.
  13. Renton AE, Pliner HA, Provenzano C, Evoli A, Ricciardi R, Nalls MA, et al. A genome-wide association study of myasthenia gravis. JAMA Neurol. 2015;72:396-404.
  14. Kanai T, Uzawa A, Kawaguchi N, Sakamaki T, Yoshiyama Y, Himuro K, et al. HLA-DRB1*14 and DQB1*05 are associated with Japanese anti-MuSK antibody-positive myasthenia gravis patients. J Neurol Sci. 2016;363:116-8.
  15. Gregersen PK, Kosoy R, Lee AT, Lamb J, Sussman J, McKee D, et al. Risk for myasthenia gravis maps to a (151) Pro-Ala change in TNIP1 and to human leukocyte antigen-B*08. Ann Neurol. 2012;72:927-35.
  16. Seldin MF, Alkhairy OK, Lee AT, Lamb JA, Sussman J, Pirskanen-Matell R, et al. Genome-wide association study of late-onset myasthenia gravis: confirmation of TNFRSF11A, and identification of ZBTB10 and three distinct HLA associations. Mol Med. 2015;21:769-81.
  17. Vincent A, Huda S, Cao M, Cetin H, Koneczny I, Rodriguez-Cruz P, et al. Serological and experimental studies in different forms of myasthenia gravis. Ann. N. Y. Acad. Sci. 2018;1413:143-53.
  18. Howard JF. Myasthenia gravis: The role of complement at the neuromuscular junction. Ann. N. Y. Acad. Sci. 2018;1412:113-28.
  19. Tzartos SJ, Sophianos D, Efthimiadis A. Role of the main immunogenic region of acetylcholine receptor in myasthenia gravis. An Fab monoclonal antibody protects against antigenic modulation by human sera. J. Immunol. 1985;134:2343-9.
  20. Lee CW, Zhang H, Geng L, Peng HB. Crosslinking-induced endocytosis of acetylcholine receptors by quantum dots. PLoS ONE. 2014;9:e90187.
  21. Vincent A, Li Z, Hart A, Barrett-Jolley R, Yamamoto T, Burges J, et al. Seronegative myasthenia gravis. Evidence for plasma factor(s) interfering with acetylcholine receptor function. Ann. N. Y. Acad. Sci. 1993;681:529-38.
  22. Huijbers MG, Zhang W, Klooster R, Niks EH, Friese MB, Straasheijm KR, et al. MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4. Proc. Natl. Acad. Sci. USA. 2013;110(51):20783-8.
  23. Yan M, Xing GL, Xiong WC, Mei L. Agrin and LRP4 antibodies as new biomarkers of myasthenia gravis. Ann N Y Acad Sci. 2018;1413(1):126-35.
  24. Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection of the T cell repertoire: What thymocytes see (and don’t see). Nat. Rev. Immunol. 2014;14:377-91.
  25. Dragin N, Bismuth J, Cizeron-Clairac G, Biferi MG, Berthault C, Serraf A, et al. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. J. Clin. Investig. 2016;126:1525-37.
  26. Marx A, Pfister F, Schalke B, Saruhan-Direskeneli G, Melms A, Strobel P. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun. Rev. 2013;12:875-84.
  27. Liu Y, Zhang H, Zhang P, Meng F, Chen Y, Wang Y, et al. Autoimmune regulator expression in thymomas with or without autoimmune disease. Immunol. Lett. 2014;161:50-6.
  28. Berrih-Aknin S, Panse RL, Dragin N. AIRE: A missing link to explain female susceptibility to autoimmune diseases. Ann. N. Y. Acad. Sci. 2018;1412:21-32.
  29. Kohler S, Keil TO, Swierzy M, Hoffmann S, Schaffert H, Ismail M, et al. Disturbed B cell subpopulations and increased plasma cells in myasthenia gravis patients. J. Neuroimmunol. 2013;264:114-9.
  30. Wakkach A, Guyon T, Bruand C, Tzartos S, Cohen-Kaminsky S, Berrih-Aknin S. Expression of acetylcholine receptor genes in human thymic epithelial cells: Implications for myasthenia gravis. J. Immunol. 1996;157:3752-60.
  31. Strobel P, Chuang WY, Chuvpilo S, Zettl A, Katzenberger T, Kalbacher H, et al. Common cellular and diverse genetic basis of thymoma-associated myasthenia gravis: Role of MHC class II and AIRE genes and genetic polymorphisms. Ann. N. Y. Acad. Sci. 2008;1132:143-56.
  32. Berrih-Aknin S, Le Panse R. Myasthenia gravis: A comprehensive review of immune dysregulation and etiological mechanisms. J. Autoimmun. 2014;52:90-100.
  33. Wolfe GI, Kaminski HJ, Aban IB. Randomized Trial of Thymectomy in Myasthenia Gravis. N Engl J Med. 2016;375(6):511-22.
  34. Fylenko BM, Starchenko II, Roiko NV, Cherniak VV, Novoseltseva TV. Type B1 thymoma associated with myasthenia: a case report. Visnyk Ukrainskoi medychnoi stomatolohichnoi akademii Aktualni problemy suchasnoi medytsyny. 2018;3(63):349-52.
  35. Fylenko BM. Structure of tumor pathology of thymus gland in Kharkov region for the period 1989-2011 years. Visnyk problem biolohii i medytsyny. 2012;2(93):224-7.
  36. Kushlaf H, Li Y. The evidence is stacked against thymectomy in MuSK myasthenia gravis. Muscle Nerve. 2019;59:393-4.
  37. Koneczny I, Rennspiess D, Marcuse F, Dankerluia N, Hamid MA, Mané-Damas M. Characterization of the thymus in Lrp4 myasthenia gravis: Four cases. Autoimmunity Reviews. 2019;18(1):50-5.
  38. Tomschik M, Koneczny I, Schötta A-M, Scharer S, Smajlhodzic M, Rosenegger PF, et al. Severe myasthenic manifestation of leptospirosis associated with a new sequence type of Leptospira interrogans acquired in Asia and diagnosed in Austria. Emerg. Infect. Dis. 2019;25(5): 968-71.
  39. Paltsev MA, Kakturskyi LV, Zairatiants OV, redaktory. Patolohycheskaia anatomyia: natsyonalnoe rukovodstvo. Moskva: HЕOTAR-Medya; 2011. 1264 s. [in Russiаn].
  40. Farsakh HA, Ijmail A. Morphological and histochemical changes in muscle biopsies of myasthenia gravis with a typical clinical presentation. Int Clin Pathol J. 2017;4(6):170-3.
  41. Valli G, Fogazzi GB, Cappellari A. Glomerulonephritis associated with myasthenia gravis. Am J Kidney Dis. 1998;31(2):350-5.
  42. Hanna RM, Arman F, Selamet U, Wallace WD, Barsoum M, Rastogi A. Secondary membranous nephropathy in a patient with myasthenia gravis without thymic disease, and partial remission induced by adrenocorticotropic hormone therapy. SAGE Open Medical Case Reports. 2019;7:1-7.
  43. Tsai J-L, Tsai S-F. Minimal change disease in a patient with myasthenia gravis A case report. Medicine. 2016;95(39):e5008.
  44. Ruwan KP, Prasad C, Alahakoon DGS, Vidanagama U. A case of generalised myasthenia gravis with membranous nephropathy. Ceylon Medical Journal. 2008;53(1):25-6.

Publication of the article:

«Bulletin of problems biology and medicine» Issue 4 Part 2 (154), 2019 year, 47-52 pages, index UDK [616.74+616.8]-009-091

DOI: