Животовська Л. В., Бойко Д. І., Сокіл А. А., Погорілко О. В., Волошин В. А.

СУЧАСНІ ПІДХОДИ ДО ФАРМАКОТЕРАПІЇ ПОСТТРАВМАТИЧНОГО СТРЕСОВОГО РОЗЛАДУ


Про автора:

Животовська Л. В., Бойко Д. І., Сокіл А. А., Погорілко О. В., Волошин В. А.

Рубрика:

ОГЛЯДИ ЛІТЕРАТУРИ

Тип статті:

Наукова стаття

Анотація:

У дослідженні розглянуті сучаснітенденції розвитку психофармакології посттравматичного стресового розладу з використанням MДMA, D-циклосерина, канабідіола, кетаміна та нейропептида Y. При лікуванні ПТСР перевага надається психотерапії, тоді як фармакотерапія розглядається як вторинна. В даний момент розглядається можливість використання вищезазначених речовин як у складі комплексної, так і комбінованої терапії з огляду на їх нейробіологічні ефекти, які, в свою чергу, впливають на різні ланки біохімічних процесів реконсолідації пам’яті. Так дослідження у здорових людей показали, що МДМА опосередковує обробку емоційної пам’яті. DCS впливає на специфічні підтипи рецепторів NMDA, однією з функцій яких є модуляція відповіді на екстинцію страху. Заслуговує на увагу збереження потенціалу нейропластичності та стимуляція глутаматергічної системи кетаміном у якості нового напряму фармакотерапії ПТСР. Нині на доклінічному етапі перебувають лікарські препарати, що використовують NPY-рецептори у якості терапевтичних мішеней. Незважаючи на цілу низку отриманих позитивних результатів, багато питань у цій сфері залишаються нерозв’язаними та вимагають подальшого опрацювання та поглибленого вивчення.

Ключові слова:

ПТСР, лікування, МДМА, канабідіол, Д-циклосерин, кетамін, нейропептид Y.

Список цитованої літератури:

  1. Scherbak MG. Vyznachennya postravmatychnykh stresovykh rozladiv, shcho vynykly vnaslidok nadzvychaynykh sytuatsiy. Problemy ekstremalnoi ta kryzovoi psykholohii. 2009;6:238-48. [in Ukrainian].
  2. Bohomolets OV, Pinchuk IYa, Ladyk-Bryzghalova АК. Poshyrenist ta struktura posttravmatychnykh porushen v uchasnykiv boiovykh dii. Arkhiv psykhiatrii. 2016;22:2(85):11-5. [in Ukrainian].
  3. Koval IA. Diahnostyka i dyferentsiina diahnostyka hostroho stresovoho rozladu ta posttravmatychnoho stresovoho rozladu v zahalnomedychnii praktytsi. Problemy suchasnoi psykholohii. 2015;27:210-9. [in Ukrainian].
  4.  Ihrunova KN. Psykhofyzyolohycheskyi mekhanyzm stressa. Tavrycheskyi medyko-byolohycheskyi vestnyk. 2004;8-16. [in Russian].
  5. Unifikovanyi klinichnyi protokol pervynnoi, vtorynnoi (spetsializovanoi) ta tretynnoi (vysokospetsializovanoi) medychnoi dopomohy reaktsiia na vazhkyi stres ta rozlady adaptatsii. Posttravmatychnyi stresovyi rozlad: Nakaz Ministerstva okhorony zdorov’ia Ukrainy. 2016;121:57. [in Ukrainian].
  6. Pishel VYa, Polyv’iana MYu. Problemni pytannia psykhofarmakoterapii posttravmatychnoho stresovoho rozladu. Arkhiv psykhiatrii. 2016;22:1(84):7-11. [in Ukrainian].
  7. Korostii VI, Polishchuk VT, Zavorotnyi VI. Psykhofarmakoterapiia v kompleksnomu likuvanni ta reabilitatsii posttravmatychnoho stresovoho rozladu. Mizhnarodnyi nevrolohichnyi zhurnal. 2015;6(76):59-71. [in Ukrainian].
  8. Hryn KV, Skrypnikov AM, Herasymenko LO, Shynder VV, vynakhidnyky; Ukrainska medychna stomatolohichna akademiia, patentovlasnyk. Sposib likuvannia posttravmatychnykh stresovykh rozladiv. Patent Ukrainy №125456. 2018 trav. 10. [in Ukrainian].
  9. Guina J, Rossetter SR, DeRhodes BJ, Nahhas RW, Welton RS. Benzodiazepines for PTSD: A systematic review and Meta-Analysis. Journal of Psychiatric Practice. 2015;21:4:281-303.
  10. Feduccia AA, Mithoefer MC. MDMA-assisted psychotherapy for PTSD: Are memory reconsolidation and fear extinction underlying mechanisms? Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2018;84:221-8.
  11. Monfils MH, Cowansage KK, Klann E, LeDoux JE. Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science. 2009;324(5929):951-5.
  12. Nader K, Schafe GE, Le Doux JE. Fear memories require protein synthesis inthe amygdala for reconsolidation after retrieval. Nature. 2000;406(6797):722-6.
  13. Bedi G, Phan KL, Angstadt M, de Wit H. Effects of MDMA on sociability and neural response to social threat and social reward. Psychopharmacology. 2009;207(1):73-83.
  14. Carhart-Harris RL, Wall MB, Erritzoe D, Kaelen M, Ferguson B, De Meer I, et al. The effect of acutely administered MDMA on subjective and BOLD-fMRI responses to favourite and worst autobiographical memories. Int. J. Neuropsychopharmacol. 2014;17(4):527-40.
  15. Doss MK, Weafer J, Gallo DA, de Wit H. MDMA impairs both the encoding and retrieval of emotional recollections. Neuropsychopharmacology. 2018;43:791-800.
  16. Lane RD, Ryan L, Nadel L, Greenberg L. Memory reconsolidation, emotional arousal, and the process of change in psychotherapy: new insights from brain science. Behav. Brain Sci. 2015;38:1.
  17. Jafari M, Seese RR, Babayan AH, Gall CM, Lauterborn JC. Glucocorticoid receptors are localized to dendritic spines and influence local actin signaling. Mol. Neurobiol. 2012;46(2):304-15.
  18. Meir Drexler S, Wolf OT. The role of glucocorticoids in emotional memory reconsolidation. Neurobiol. Learn. Mem. 2017;142:126-34.
  19. de Quervain DJ, Bentz D, Michael T, Bolt OC, Wiederhold BK, Margraf J, et al. Glucocorticoids enhance extinction-based psychotherapy. Proc. Natl. Acad. Sci. U.S.A. 2011;108(16):6621-5.
  20. Hamacher-Dang TC, Engler H, Schedlowski M, Wolf OT. Stress enhances the consolidation of extinction memory in a predictive learning task. Front. Behav. Neurosci. 2013;7:108.
  21. de Quervain DJ, Margraf J. Glucocorticoids for the treatment of post-traumatic stress disorder and phobias: a novel therapeutic approach. Eur. J. Pharmacol. 2008;583(2-3):365-71.
  22. Mas M, Farre M, de la Torre R, Roset PN, Ortuno J, Segura J, et al. Cardiovascular and neuroendocrine effects and pharmacokinetics of 3,4-me thylenedioxymethamphetamine in humans. J. Pharmacol. Exp. Ther. 1999;290(1):136-45.
  23. Lester SJ, Baggott M, Welm S, Schiller NB, Jones RT, Foster E, et al. Cardiovascular effects of 3,4-methylenedioxymethamphetamine. A doubleblind, placebo-controlled trial. Ann. Intern. Med. 2000;133(12):969-73.
  24. Jaycox LH, Foa EB, Morral AR. Influence of emotional engagement and habituation on exposure therapy for PTSD. J. Consult. Clin. Psychol. 1998;66(1):185-92.
  25. Milad MR, Orr SP, Lasko NB, Chang Y, Rauch SL, Pitman RK. Presence and acquired origin of reduced recall for fear extinction in PTSD: results of a twin study. J. Psychiatr. Res. 2008;42(7):515-20.
  26. Mithoefer MC, Wagner MT, Mithoefer AT, Jerome L, Doblin R. The safety and efficacy of {+/−}3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J. Psychopharmacol. 2011;25(4):439-52.
  27. Sheinin A, Shavit S, Benveniste M. Subunit specificity and mechanism of action of NMDA partial agonist D-cycloserine. Neuropharmacology. 2001;41(2):151-8.
  28. Zhou Q, Sheng M. NMDA receptors in nervous system diseases. Neuropharmacology. 2013;74:69-75.
  29. Davis M. NMDA receptors and fear extinction: implications for cognitive behavioral therapy. Dialogues Clin Neurosci. 2011;13(4):463-74.
  30. Attari A, Rajabi F, Maracy MR. D-cycloserine for treatment of numbing and avoidance in chronic post traumatic stress disorder: a randomized, double blind, clinical trial. J. Res. Med. Sci. 2014;19(7):592-8.
  31. Richardson R. Facilitation of fear extinction by D-cycloserine: theoretical and clinical implications. Learn Mem. 2004;11(5):510-6.
  32. Walker DL, Ressler KJ, Lu KT, Davis M. Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. J. Neurosci. 2002;22(6):2343-51.
  33. Goff DC. D-cycloserine: an evolving role in learning and neuroplasticity in schizophrenia. Schizophr. Bull. 2012;38(5):936-41.
  34. Difede J, Cukor J, Wyka K, Olden M, Hoffman H, Lee FS, et al. D-cycloserine augmentation of exposure therapy for post-traumatic stress disorder: a pilot randomized clinical trial. Neuropsychopharmacology. 2014;39(5):1052-8.
  35. de Kleine RA, Hendriks GJ, Kusters WJC, Broekman TG, van Minnen A. A randomized placebo-controlled trial of D-cycloserine to enhance exposure therapy for posttraumatic stress disorder. Biol Psychiatry. 2012;71(11):962-8.
  36. Rothbaum BO, Price M, Jovanovic T, Norrholm SD, Gerardi M, Dunlop B, et al. A randomized, double-blind evaluation of D-cycloserine or alprazolam combined with virtual reality exposure therapy for posttraumatic stress disorder in Iraq and Afghanistan war veterans. Am. J. Psychiatry. 2014;171(6):640-8.
  37. Bergamaschi MM, Queiroz RHC, Zuardi AW, Crippa JAS. Safety and side effects of cannabidiol, a Cannabis sativa constituent. Curr. Drug Saf. 2011;6:237-49.
  38. Das RK, Kamboj SK, Ramadas M, Curran HV, Morgan CJA. Cannabidiol enhances consolidation of explicit fear extinction in humans. Psychopharmacology. 2013;2:781-92.
  39. Shannon S, Opila-Lehman J. Effectiveness of cannabidiol oil for pediatric anxiety and insomnia as part of posttraumatic stress disorder: a case report. Perm. J. 2016;20:108-11.
  40. Greer GR, Grob CS, Halberstadt AL. PTSD symptom reports of patients evaluated for the new mexico medical cannabis program. J. Psychoactive Drugs. 2014;46:73-7.
  41. Hill MN, Campolongo P, Yehuda R, Patel S. Integrating endocannabinoid signaling and cannabinoids into the biology and treatment of posttraumatic stress disorder. Neuropsychopharmacology. 2018;43:80-102.
  42. Bonn-Miller MO, Vujanovic AA, Feldner MT, Bernstein A, Zvolensky MJ. Posttraumatic stress symptom severity predicts marijuana use coping motives among traumatic event-exposed marijuana users. J. Trauma. Stress. 2007;20:577-86.
  43. Bujarski SJ, Feldner MT, Lewis SF, Babson KA, Trainor CD, Leen-Feldner E, et al. Marijuana use among traumatic eventexposed adolescents: posttraumatic stress symptom frequency predicts coping motivations for use. Addict. Behav. 2012;37:53-9.
  44. Cougle JR, Bonn-Miller MO, Vujanovic AA, Zvolensky MJ, Hawkins KA. Posttraumatic stress disorder and cannabis use in a nationally representative sample. Psychol. Addict. Behav. 2011;25:554-8.
  45. Kevorkian S, Bonn-Miller MO, Belendiuk K, Carney DM, Roberson-Nay R, Berenz EC. Associations among trauma, posttraumatic stress disorder, cannabis use, and cannabis use disorder in a nationally representative epidemiologic sample. Psychol. Addict. Behav. 2015;29:633-8.
  46. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016;22(3):238-49.
  47. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329(5994):959-64.
  48. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47(4):351-4.
  49. Feder A, Parides MK, Murrough JW, Perez AM, Morgan JE, Saxena S, et al. Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: a randomized clinical trial. JAMA Psychiatry. 2014;71(6):681-8.
  50. Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, et al. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol. Psychiatry. 2011;69(8):754-61.
  51. Abdallah CG, Averill LA, Collins KA, Geha P, Schwartz J, Averill C, et al. Ketamine treatment and global brain connectivity in major depression. Neuropsychopharmacology. 2017;42(6):1210-9.
  52. Murrough JW, Abdallah CG, Anticevic A, Collins KA, Geha P, Averill LA, et al. Reduced global functional connectivity of the medial prefrontal cortex in major depressive disorder. Hum. Brain Mapp. 2016;37(9):3214-23.
  53.  Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475(7354):91-5.
  54. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533(7604):481-6.
  55. Loix S, De Kock M, Henin P. The anti-inflammatory effects of ketamine: state of the art. Acta Anaesthesiol Belg. 2011;62(1):47-58.
  56. Liebenberg N, Joca S, Wegener G. Nitric oxide involvement in the antidepressant-like effect of ketamine in the flinders sensitive line rat model of depression. Acta Neuropsychiatr. 2015;27(2):90-6.
  57. Rosa PB, Neis VB, Ribeiro CM, Moretti M, Rodrigues AL. Antidepressant-like effects of ascorbic acid and ketamine involve modulation of GABAA and GABAB receptors. Pharmacol. Rep. 2016;68(5):996-1001.
  58. Kask A, Harro J, von Hörsten S, Redrobe JP, Dumont Y, Quirion R. The neurocircuitry and receptor subtypes mediating anxiolytic-like effects of neuropeptide Y. Neurosci. Biobehav. Rev. 2002;26(3):259-83.
  59. Caberlotto L, Fuxe K, Hurd YL. Characterization of NPY mRNA-expressing cells in the human brain: co-localization with Y2 but not Y1 mRNA in the cerebral cortex, hippocampus, amygdala, and striatum. J. Chem. Neuroanat. 2000;20(3-4):327-37.
  60. Sabban EL, Alaluf LG, Serova LI. Potential of neuropeptide Y for preventing or treating post-traumatic stress disorder. Neuropeptides. 2016;56:19-24.
  61. Kastin AJ, Akerstrom V. Nonsaturable entry of neuropeptide Y into brain. Am. J. Phys. 1999;276(3,Pt1):479-82.
  62. Brothers SP, Wahlestedt C. Therapeutic potential of neuropeptide Y (NPY) receptor ligands. EMBO Mol. Med. 2010;2(11):429-39.
  63. Shoblock JR, Welty N, Nepomuceno D, Lord B, Aluisio L, Fraser I, et al. In vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2- (diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a selective brain penetrant small molecule antagonist of the neuropeptide Y Y(2) receptor. Psychopharmacology. 2010;208(2):265-77.
  64. Kutsenko NL, Mikityuk MV, Bobrova IP, Kaidashev IP. Vplyv fulereniv na rozvytok alerhichnoho zapalennya v eksperymenti. Problemy ekolohiyi ta medytsyny. 2009;13(5-6):6-12. [in Ukrainian].
  65. Mittapalli GK, Vellucci D, Yang J, Toussaint M, Brothers SP, Wahlestedt C, et al. Synthesis and SAR of selective small molecule neuropeptide Y Y2 receptor antagonists. Bioorg. Med. Chem. Lett. 2012;22(12):3916-20.
  66. Cippitelli A, Rezvani AH, Robinson JE, Eisenberg L, Levin ED, Bonaventure P, et al. The novel, selective, brain-penetrant neuropeptide Y Y2 receptor antagonist, JNJ-31020028, tested in animal models of alcohol consumption, relapse, and anxiety. Alcohol. 2011;45(6):567-76.
  67. Morales-Medina JC, Dumont Y, Bonaventure P, Quirion R. Chronic administration of the Y2 receptor antagonist, JNJ-31020028, induced antidepressant like-behaviors in olfactory bulbectomized rat. Neuropeptides. 2012;46(6):329-34.
  68. Verma D, Wood J, Lach G, Mietzsch M, Weger S, Heilbronn R, et al. NPY Y2 receptors in the central amygdala reduce cued but not contextual fear. Neuropharmacology. 2015;99:665-74.
  69. Hirsch D, Zukowska Z. NPY and stress 30 years later: the peripheral view. Cell. Mol. Neurobiol. 2012;32(5):645-59.
  70. Cohen S, Vainer E, Matar MA, Kozlovsky N, Kaplan Z, Zohar J, et al. Diurnal fluctuations in HPA and neuropeptide Y-ergic systems underlie differences in vulnerability to traumatic stress responses at different Zeitgeber times. Neuropsychopharmacology. 2015;40(3):774-90.
  71. Serova LI, Tillinger A, Alaluf LG, Laukova M, Keegan K, Sabban EL. Single intranasal neuropeptide Y infusion attenuates development of PTSDlike symptoms to traumatic stress in rats. J. Neurosci. 2013;236:298-312.

Публікація статті:

«Вістник проблем біології і медицини» Випуск 2 Том 2 (151), 2019 рік , 38-44 сторінки, код УДК 616.89-008-039.12-06:616.45-001.1/3:615.2/3

DOI: