PROGNOSTIC MODEL FOR HOSPITALIZATION PREDICTION DURING THE NEXT 6 MONTHS IN THE ELDERLY WITH CHRONIC HEART FAILURE: DEVELOPMENT, RATIONALE, EVALUATION
About the author:
Khaniukov O. O., Smolianova O. V.
Heading:
CLINICAL AND EXPERIMENTAL MEDICINE
Type of article:
Scentific article
Annotation:
Given that chronic heart failure (CHF) refers to ambulatory care–sensitive conditions, the hospital admission number can be reduced. One way to reduce this is to search for predictors that are easy to analyze in routine clinical practice. Aim. Identify predictors and develop a model for hospitalization prediction in the next 6 months in the elderly with CHF on the background of hypertension (AH) and chronic kidney disease (CKD) in an outpatient setting. Objects and methods. The study included 111 ambulatory patients, aged 60 to 74 years, with CHF stage II, AH stage II and CKD stage II-IIIa. To assess the predictive possibility of variables and develop a prediction model logistic analysis was used. Results. The stepwise multiple logistic regression analysis found a statistically significant connection with a probability of hospitalization for the next variables: medication adherence (р=0,028), GFR EPI EPI≤59,9 mL/min/1,73 m2 (р=0,027), the presence of crackles over the lungs (р=0,0011), NYHA functional class (р=0,033). According to the assessment results of the obtained model χ2 = 43,78, df=4, р<0,0001, AUC – 0,91 (CI 0,83-0,96), р<0,0001. According to the obtained Somers’ D value, the predictive possibility of our model was 82%. The optimal cut-off threshold for the model was found to be >0,155 (J – 0,696, sensitivity – 90,48%, specificity – 79,17%). Conclusions. According to the results of multiple logistic analysis, medication adherence, GFR EPI ≤59.9 ml/ min/1.73 m2, the presence of crackles over the lungs, as well as NYHA FC are statistically significant predictors of hospitalization for CHF in elderly patients. These indicators are simple for routine assessment and should be modified in an outpatient setting to reduce hospitalization in the elderly with CHF.
Tags:
chronic heart failure, hospitalization, prognostic model, ambulatory care–sensitive conditions, chronic kidney disease.
Bibliography:
- McMurray JJJV. Improving outcomes in heart failure: a personal perspective. Eur Heart J. 2015 Dec 21;36(48):3467-70. DOI: .
- Lam CSP, Voors AA, de Boer RA, Solomon SD, van Veldhuisen DJ. Heart failure with preserved ejection fraction: from mechanisms to therapies. Eur Heart J. 2018 Aug;39(30):2780-92. DOI: https://doi.org/10.1093/eurheartj /ehy301.
- James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018 Nov;392(10159):1789-858. DOI: https://doi.org/10.1016 /S0140-6736(18)32279-7.
- Jones NR, Hobbs FR, Taylor CJ. Prognosis following a diagnosis of heart failure and the role of primary care: a review of the literature. BJGP Open. 2017;1(3):17X101013. DOI: https://doi.org/10.3399/bjg popen17X101013.
- Leventer-Roberts M, Cohen-Stavi C, Hoshen M, Gofer I, Sherf M, Balicer R. Analyzing admission rates for multiple ambulatory care– sensitive conditions. Am J Manag Care. 2020 May;26(5):e155-61. DOI: .
- Solomon SD, Claggett B, Packer M, Desai A, Zile MR, Swedberg K, et al. Efficacy of Sacubitril/Valsartan relative to a prior decompensation. JACC: Heart Fail. 2016 Oct;4(10):816-22. DOI: https://doi.org/10.1016/j.jchf.2016. 05.002.
- Lekhan VM, Kriachkova LV, Serdyuk VM, Puchkova NV, Maksimenko OP, Kozyr OA, et al. Potentsiino zapobizhni hospitalizatsii dorosloho naselennia Ukrainy, poviazani z zakhvoriuvanniamy, shcho piddaiutsia ambulatornomu likuvanniu. Visnyk problem biolohii i medytsyny. 2020;2(156): 319-24. DOI: https://doi.org/10.29254/2077-4214-2020-2-156-319-324. [in Ukrainian].
- Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart Journal. 2016 Jul;37(27):2129-200. DOI: https://doi.org/10.1093/eurheartj/ehw128.
- Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018 Sep;39(33):3021-104. DOI: https://doi.org/10.1093/eurheartj /ehy339.
- Levin A, Stevens PE, Bilous RW, Coresh J, De Francisco ALM, De Jong PE et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney International Supplements. 2013 Jan;3(1):1-150. DOI: https://doi.org/10.1038/kisup.2012.73.
- Valente MA, Hillege HL, Navis G, Voors AA, Dunselman PH, van Veldhuisen DJ, et al. The Chronic Kidney Disease Epidemiology Collaboration equation outperforms the Modification of Diet in Renal Disease equation for estimating glomerular filtration rate in chronic systolic heart failure. Eur Journal Heart Fail. 2014 Jan;16(1):86–94. DOI: https: //doi.org/10.1093/eurjhf/hft128.
- Hosmer DW, Lemeshow S, Sturdivant RX. Applied Logistic Regression. 3rd ed. New York: Wiley; 2013. 528 p. Available from: .
- Chowdhury MZI, Turin TC. Variable selection strategies and its importance in clinical prediction modelling. Fam Med Com Health. 2020 Feb;8(1):e000262. DOI: https://doi.org/10.1136/fmch-2019-000262.
- Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014 Aug;35(29):1925-31. DOI: https://doi.org/10.1093/eurheartj/ehu207.
- Wu JR, Moser DK. Medication adherence mediates the relationship between heart failure symptoms and cardiac event-free survival in patients with heart failure. J Cardiovasc Nurs. 2018 Feb;33(1):40-6. DOI: https://doi.org/10. 1097/JCN.0000000000000427.
- Hood SR, Giazzon AJ, Seamon G, Lane KA, Wang J, Eckert GJ, et al. Association between medication adherence and the outcomes of heart failure. Pharmacotherapy. 2018 May;38(5):539-45. DOI: https://doi.org/10. 1002/phar.2107.
- Mullens W, Damman K, Testani JM, Martens P, Mueller C, Lassus J, et al. Evaluation of kidney function throughout the heart failure trajectory – a position statement from the Heart Failure Association of the European Society of Cardiology. Eur Journal Heart Fail. 2020 Apr;22(4):584-603. DOI: https://doi.org/10.1002/ejhf.1697.
- Löffler AI, Cappola TP, Fang J, Hetzel SJ, Kadlec A, Astor B, et al. Effect of renal function on prognosis in chronic heart failure. Am J Cardiol. 2015 Jan;115(1):62-8. DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.116. 003825.
- Álvarez-García J, Ferrero-Gregori A, Puig T, Vázquez R, Delgado J, Pascual-Figal D, et al. A simple validated method for predicting the risk of hospitalization for worsening of heart failure in ambulatory patients: the Redin-SCORE. Eur Journal Heart Fail. 2015 Aug;17(8):818-27. DOI: https://doi.org/10.1002/ejhf.287.
- Rich JD, Burns J, Freed BH., Maurer MS., Burkhoff D, Shah SJ. Meta-analysis global group in chronic (MAGGIC) heart failure risk score: validation of a simple tool for the prediction of morbidity and mortality in heart failure with preserved ejection fraction. J Am Heart Assoc. 2018 Oct;7(20):e009594. DOI: https://doi.org/10.1161/JAHA.118.009594.
- Caraballo C, Desai NR, Mulder H, Alhanti B, Wilson FP, Fiuzat M, et al. Clinical implications of the New York Heart Association classification. JAHA. 2019 Dec;8(23):e014240. DOI: https://doi.org/10.1161/JAHA.119. 014240.
- Husain-Syed F, McCullough PA, Birk H-W, Renker M, Brocca A, Seeger W, et al. Cardio-pulmonary-renal interactions: a multidisciplinary approach. J Am Coll Cardiol. 2015 Jun;65(22):2433-48. DOI: https://doi.org/10.1016 /j.jacc.2015.04.024.
Publication of the article:
«Bulletin of problems biology and medicine» Issue 3 (161), 2021 year, 149-153 pages, index UDK 616.12-008.46-036.1-037-07-053.9:614.21:164