Shkolnikov V. S.

Morphology of Spinal Cord Human Embryo 6-7 Weeks of Intrauterine Development (Histological and Immuno-Histochemical Study)


About the author:

Shkolnikov V. S.

Heading:

MORPHOLOGY

Type of article:

Scentific article

Annotation:

Spinal cord research human embryonic 6-7 weeks fetal development have allowed to establish quan- titative relationships of gray and white matter, their structure and the nature of cytoarchitectonics segments at dif- ferent levels, as well as features of NSC proliferation in the matrix (ependymal) layer. Longitudinal and transverse dimensions of the segments vary throughout the spinal cord. The transverse and longitudinal dimensions at the level of the upper cervical segments were respectively 1,16 ± 0,04 mm and 1,17 ± 0,03 mm. Similar options segments at a level corresponding to the cervical thickening were 1,57 ± 0,09 mm and 1,10 ± 0,07 mm. The transverse and longitudinal dimensions at the level of the thoracic segments are equal to 1,11 ± 0,05 mm and 0,76 ± 0,02 mm. Linear dimensions of the segments at the level of the lumbosacral thickening (at widest point ) were set as follows: the transverse size – 1,41 ± 0,08 mm, the longitudinal size – 0,92 ± 0,02 mm. For the internal structure of all segments of spinal cord, which is characteristic for this period of development is characterized by a clear division of ependymal, mantle and marginal layers. However, ependymal and mantle layers constitute the gray matter and marginal – white matter of segment. The area of the gray matter significantly exceeds the area of the white matter. In general, the gray matter of the spinal cord of human embryos 6 – 7 weeks of fetal development takes 2 /3 of the total area of the segments at all levels with no clear division between front, side and rear corners. Ventral part of the gray matter – the future site of horns – the widest and gradually tapering to dorsal direction. Mean width of the ventral part varies depending on the level of cuts. NSC proliferation processes occurring in the dorsal half of intense ependymal layer than the ventral. The cells that make up ependymal layer around the perimeter with an elongated ellipse shape with poorer cytoplasm and a nucleus of decentralization. Radial glial cell migration occurs not only in the mantle layer, but also in the central cavity of the channel. Stadium, located in the mantle layer are oval or spherical shape. The morphology and size of the cells of the gray matter is actually the same in all parts of the spinal cord. Marginal layer is represented by white matter. Separation of white matter in cord is missing. Marginal layer relatively better expressed in ventro – lateral parts of the spinal cord segments along its length, and the width of the edge layer as gray matter, progressively reduced in the dorsal direction. Radial glial fibers expressing vimentin protein, penetrate the marginal layer. It was established that in addition to vimentin, radial glial fibers expressing the protein CDX- 2. The structural basis of marginal fiber layer consists of radial glia and their processes.

Tags:

spinal cord, gray matter, white matter, ependymal layer, neural stem cells, radial glia

Bibliography:

  • гилберт С. Биология развития / С. гилберт // В 3-х томах. Т. 1: пер. с англ. – Москва : Мир, 1993. – 228 с.
  • гиляров А. В. Нестин в клетках центральной нервной системы / А. В. гиляров // Морфология. – 2007. – № 1. – С. 85 – 90.
  • Кирик О. В. Виментин в клетках эпендимы и субвентрикулярной пролиферативной зоны конечного мозга / О. В. Ки- рик, Д. Э. Коржевский // Клеточные технологии в биологии и медицине. – 2012. – №4. – С. 210 – 214.
  • Кузин А. В. Ансамблевые взаимодействия в центральной нервной системе / А. В. Кузин, Ю. г. Васильев, В. М. Чучков, Т. г. Шорохова // Ижевск-Берлин : АНК – 2004. – 160 с.: ил.
  • Лісяний М. І. Вивчення експресії прогеніторними нейроклітинами маркерних протеїнів in vitro / М. І. Лісяний, Л. Д. Лю- бич // Трансплантологія. – 2004. – № 4. – С. 307–310.
  • Обухов Д. К. Нейрогенез и пролиферативные зоны в ЦНС взрослых позвоночных животных / Д. К. Обухов, Е. В. Пущи- на // Advances in current natural sciences. – 2013. – № 5. – С. 18 – 22.
  • Современные методы иммуноцитохимии – основа для изучения структурной организации глиоцитов и оценки глиаль- ной реакции в органах нервной системы / Д. Э. Коржевский, Е. г. Сухорукова, О. В. Кирик // Мат. 8-й Всероссийской научной конференции : Ретиноиды, Москва – 2011. – С. 71–76.
  • Цимбалюк В. І. Нейрогенні стовбурові клітини у неврології та нейрохірургії / В. І. Цимбалюк // Журнал НАМН України.– 2011. – №1. – С. 76 – 80.
  • Черноиваненко И. С. Роль виментина в миграции клеток / И. С. Черноиваненко, А. А. Минин, А. А. Минин // Онтогенез– 2013. – № 3. – С. 186 – 202.
  • Bar H. The biology for desmin filaments: how do mutations affect their structure, assembly, and organization / H. Bar, S. Strel- kov, G. Sjoberg // Journal of structural biology. – 2004. – № 148. – P. 137–152.
  • Bear M. Neuroscience: exploring the brain / M. Bear, B. Connors, M. Paradiso // Baltimore: Lippincott Williams & Wilkins. – 2007. – 324 p.
  • Comparison of neural precursor cell fate in second trimester human brain and spinal cord / K. Barami, J. Zhao, F. Diaz, W. Li- man // Neurol. Res. – 2000. – № 23. – P. 260–266.
  • Eyre J. development of the human spinal cord / J. Eyre, G. Clowry // Brain. – 2002. –№ 9. – P. 2134–2136.
  • Stempl D. Neural stem sells are blasting off / D. Stempl, N. Mahanthappa // Neuron. – 1997. – № 18. – P. 1–4.
  • Tarr P. ABCG-1 and ABSG-4 are coexpressed in neurons and astrocytes of the CNS and regulate cholesterol homeostasis through SREBP-2 / P. Tarr, P. Edwards // J. Lipid Res. – 2008. – № 49. – P. 169–182.
  • Wang C. Polycomb group proteins are essential for spinal cord development / C. Wang, J. Zhao, C. Lu // Frontiers in Biosc- tence. – 2010. – № 15. – P. 1018–1022.

Publication of the article:

«Bulletin of problems biology and medicine» Issue 1 (106), 2014 year, 280-286 pages, index UDK 572. 7:611. 82-053. 13