Synthesis of Iron Nanoparticles and their Biosafety Characterization
About the author:
Rieznichenko L. S., Dybkova S. M., Doroshenko A. M., Chekman I. S., Ulberg Z. R.
Heading:
NANOTECHNOLOGY
Type of article:
Scentific article
Annotation:
Iron deficiency anemia is one of the most widespread pathological states as well as social problems in the world. Pregnant women, children and elderly persons are particularly vulnerable. For the iron deficiency anemia’ prevention and treatment modern pharmaceutical market proposes considerable series of antianemic preparations, which differ in iron form and concentration characteristics as well as in presence of the additives. Unfortunately, in most cases all types of these preparations are possessed by some disadvantages and drug side effects among which low bioavailability, nausea, anorexia, metal taste in mouth, constipation, protracted course of therapy (2–3 months) for achievement of therapeutic efficiency are the most widespread. So, search and development of new class antianemic preparations for effective struggle with iron deficiency anemia is very actual problem today. Iron nanoparticles are possessed by high potential in this area according to the expressed biological activity of metal nanoparticles on the molecular level. Synthesis of iron nanoparticles, their physicochemical characterization and estimation of the biosafety parameters was the main goal of this work. The original protocol for iron nanoparticles’ colloidalchemical synthesis in water medium has been developed. The shape and size of synthesized iron nanoparticles has been defined by the method of transmission electron microscopy. It has been determined that synthesized nanoparticles have spherical form and average particles’ size 40 nm. Chemical composition’ Xray microanalysis of the synthesized iron nanoparticles has been specified by the method of energy dispersive Xray spectroscopy. 100 % of Fe content has been revealed in the nanoparticles. The presence of oxygen in the structure of the particles has not been fixed. This is an indication that the synthesized nanoparticles are particles of zerovalent iron (Fe0NP). Synthesized iron nanoparticles have been characterized according to the biosafety level using in vitro and in vivo tests. According to the Guidelines «Safety assessment of medical nanopreparations» parameters of cytotoxicity, genotox icity, mutagenicity, biochemical markers (ATPase and lactate dehydrogenase activities) and physiological marker «mi croflora state of the human gastrointestinal tract» have been used for biosafety level estimation in vitro. The synthesized Fe0NP have been characterized as biosafe and biocompatible: they were noncytotoxic, nongenotoxic, nonmutagenic and biosafe according to the used physiological and biochemical markers. The parameters of LD50 of the synthesized Fe NP for the intragastric as well as intravenous routes of administration NP intragastric administration was greater than 5000 mg/kg. LD50 intravenous administration was 220,3 ± 7,1 for both sexes of BALB/c mice. for the Fe0NP It was revealed that synthesized iron nanoparticles belong to IV toxicity class (low toxic substances) for intravenous and V toxicity class (practically nontoxic substances) for intragastric routes of administration according to the Hodge H. C. and Sterner L. H. toxicological classification.
Tags:
iron nanoparticles, synthesis, physicochemical characterization, biosafety, cytotoxicity, genotoxicity, mutagenicity, LD50.
Bibliography:
- безруков В. В. Вплив залізодефіцитної анемії вагітних на фізичний та психомоторний розвиток дітей раннього віку / В. В. безруков // буковинський медичний вісник. – 2002. – т. 6, № 2 – с. 135137.
- доклінічні дослідження лікарських засобів (методичні рекомендації) / за ред. о. В. стефанова. – к.: авіценна, 2002. – 527 с.
- Марушко Ю. В. залізодефіцитні стани у дітей на сучасному етапі / Ю. В. Марушко, о. о. лісоченко // здоров’я україни. – 2008. – № 10/1. – с. 2527.
- Методичні рекомендації «оцінка безпеки лікарських нанопрепаратів», затверджені науковоекспертною радою дер жавного експертного центру Моз україни (протокол № 8 від 26. 09. 2013). – київ, 2013. – 108 с.
- Anaemia in lowincome and middleincome countries / Y. Balarajan, U. Ramakrishnan, E. Ozaltin [et al.] // Lancet. – 2011. – Vol. 378, № 9809. – р. 2123–2135.
- Crichton R. R. Iron metabolism: from molecular mechanisms to clinical consequences / R. R. Crichton // John Wiley & Sons, Chichester, U. K., 2009. – 488 p.
- Crichton R. R., Danielson B. G., Geisser P. Iron therapy with special emphasis on intravenous administration / R. R. Crichton, B. G. Danielson, P. Geisser. – Bremen : UNIMED Verlag AG, 2005. – 96 p.
- Finney D. J. Probit Analisis. – 3rd edition, chapt. 3 and 4. / D. J. Finney. – Cambridge : Cambridge University Press, 1971. – 333 р.
- Hodge н. с., Sterner L. H. Tabulation of toxicity classes / н. с. Hodge, L. H. Sterner // Am. industr. Hyg. Ass. Quart. – 1943. – Vol. 10(4). – P. 93.
- Iron Deficiency Anemia. Assessment Prevention and Control. A Guide for Programme Managers. – Geneva : WHO; 2001. –132 p.
- OECD. Guidelines for the Testing of Chemicals / Section 4: Health Effects Test No. 425: Acute Oral Toxicity – UpandDown Procedure (UDP). Organization for Economic Cooperation and Development, Paris, France : 2008. – 27 p.
- Qunibi W. Y. The efficacy and safety of current intravenous iron preparations for the management of irondeficiency anaemia: a review / W. Y. Qunibi // Arzneimittelforschung. – 2010. – Vol. 60(6a). – р. 399–412.
- Characterization of zerovalent iron nanoparticles / Y. P. Sun, X. Li, J. Cao, W. Zhang [et al.] // Advances in Colloid and Interface Science. – 2006. – Vol. 120, № 1–3. – P. 47–56.
- Worldwide prevalence of anaemia 1993–2005: WHO global database on anaemia / Ed. by B. de Benoist, E. McLean, I. Egli, M. Cogswell. – 2008. – 48 p.
Publication of the article:
«Bulletin of problems biology and medicine» Issue 3 part 2 (111), 2014 year, 319-323 pages, index UDK 615. 07