Ushenko A. G., Vovk Yu. N., Antonyuk O. P.

LASER POLARIMETRIC DIAGNOSTICS OF EPIELINE, MUSCULAR AND CONNECTIVE TISSUES


About the author:

Ushenko A. G., Vovk Yu. N., Antonyuk O. P.

Heading:

METHODS AND METHODOLOGIES

Type of article:

Scentific article

Annotation:

The aim of the study was to determine the criteria for laser images of epithelial, muscular and connective tissue in normal and pathology based on the use of a laser image of the coordinate distribution of the element of the Jones matrix. The object and methods of research. Three groups of histological sections are used: “A” – tissue of the epithelium (wall of the colon – 9 microdermabrasions); “Б” – muscle tissue (smooth muscle – 11 micropreparations); “B” – dermal layer (walls of the abdomen – 10 micropreparations); “Б1” – histological sections of the smooth muscle of the abdominal wall – 10 microdermabrasions; “Б2” – histological sections of transversal-striatal muscle –12 microdermabrasions; “Б3” – histological sections of the tissue of the myocardium – 10 microdermabrasions; walls of the small and large intestine in norm and pathology (sepsis) – 10 micropreparations and the histogram of its values. The experimentally found ranges of variation DR(i) of the statistical moments of the 1st-4th orders of the distribution of the Jones matrix and statistical moments, correlation parameters (average, variance, asymmetry, kurtosis, half-width L, variance W), the distribution of the element D11 (х, y) of the Jones matrix and phase shift Dθ11 (х, y) for epithelial, muscular and connective tissue walls of the small and large intestine in health and pathology. The main results illustrate the coordinate distributions and histograms of the values of the elements of the Jones matrix histological sections of the epithelial, muscular and connective tissues. The analysis of the research data revealed the possibility by comparative study of the ranges of changes in the statistical moments of the 1st – 4th orders that characterize the distribution of elements of the Jones matrix of histological sections of various types of biological tissues, and the problem of classification of the optical properties of their optically anisotropic structures. An important result was the fact that the coordinate distributions of the elements of the Jones matrix histological section of the epithelial tissue reproduce the geometric configuration of the fibrillar network, but with a smaller scale. For Johns-matrix images of the histological cut of muscle tissue, similar higher-frequency, as for epithelium tissue, patterns are observed. Here the physical reasons for the formation of coordinate distributions of the elements of the Johns muscle tissue matrix are grounded – phase modulation due to the dispersion of the directions of the optical axis of myosin fibrils, which form spatially ordered muscle bundles. The difference between the laser image and the ranges of the statistical moments of the distribution of the Johns matrix of biological tissues (epithelial, muscular and connective tissue) in norm and pathology was experimentally revealed. Conclusions. An analytical review of literary studies on the description of the polarization manifestations of optical anisotropy of biological tissues has been carried out. It is possible to substantiate the expediency of the synthesis of partial Jones matrices on the basis of the model of multilayer polycrystalline networks with linear and circular birefringence refraction for the classification of the polarization properties of biological tissues. The optical-physical criteria of polarization manifestations of directions of optical axes and birefringence of epithelial, muscular and connective tissues in norm and pathology on the basis of analysis of the coordinate structure of elements of the Jones matrix are determined.

Tags:

laser polarimetry, biological tissues

Bibliography:

  1. Ushenko AG. Polyarizatsionnaya struktura biospeklov i depolyarizatsiya lazernogo izlucheniya. Opt. i spektr. 2000;89(4):651-4. [in Russian].
  2. Ushenko OH, Pishak VP, Anhelskyy OV, Yermolenko SB, Hryhoryshyn PM. Lazerna polyarymetrychna diahnostyka v biolohiyi ta medytsyni. Pid red. VP Pishaka i OG Ushenka. Chernivtsi: Medakademiya; 2000. 271 s. [in Ukrainian].
  3. Angelskiy OV, Burkovets DN, Kovalchuk AV, Khanson SG. Fraktalnoye opisaniye sherokhovatykh poverkhnostey. Appl. Optik. 2002;41:4620-9. [in Russian].
  4. Ushenko AG. Vektornaya struktura lazernykh biospekl-poley i polyarizatsionnaya diagnostika kollagenovykh struktur kozhi. Lazernaya fizika. 2000;10(5):1143-9. [in Russian].
  5. De Bur DF, Milner TE, Nelson DzhS. Dvumernaya vizualizatsiya dvoynogo lucheprelomleniya v biologicheskoy tkani s ispolzovaniyem fazovoy i polyarizatsionno-chuvstvitel’noy opticheskoy kogerentnoy tomografii. Optik Lett. 1997;22:934-43. [in Russian].
  6. Pishak VP, Ushenko OG, Anhelskyy OV. Lazerna polyarymetrychna diahnostyka v biolohiyi ta medytsyni [monohrafiya]. Pid red. VP Pishaka ta OH Ushenka. Chernivtsi: Medakademiya; 2000. 305 s. [in Ukrainian].
  7. Anhelskyy OV, Ushenko AH, Pishak VP. Polyaryzatsiyno-korelyatsiyna obrobka zobrazhen statystychnykh ob’yektiv u vizualizatsiyi ta topolohichnoyi rekonstruktsiyi yikh fazovoyi neodnoridnosti. Proc. SPIE. 1999;4016:419-24. [in Ukrainian].
  8. Ushenko YuA, Olar OI, Dubolazov AV. Myuller-matrychna diahnostyka optychnykh vlastyvostey, vlastyvykh polikrystalichnym merezham plazmy krovi lyudyny. Fizyka napivprovidnykiv, kvantova elektronika ta optoelektronika. 2011;14(1):98-105. [in Ukrainian].
  9. Ushenko OG, Pishak VP, Anhelskyy OV, Yermolenko SB, Pishak OV, Ushenko SA. Lazery v biolohiyi i medytsyni. Chernivtsi: Medakademiya; 2000. 277 s. [in Ukrainian].
  10. Tuchyn VV. Yssledovanye byotkaney metodamy svetorasseyanyya. Uspekhy fyz. nauk. 1997;167:517-39. [in Russian]. 

Publication of the article:

«Bulletin of problems biology and medicine» Issue 1 Part 1 (148), 2019 year, 247-250 pages, index UDK 611.018.6+611.018.2]:611-073.55

DOI: