Vilkhova O. V.

STRUCTURAL ORGANIZATION OF THE LOOSE FIBROUS CONNECTIVE TISSUE


About the author:

Vilkhova O. V.

Heading:

LECTURES

Type of article:

Scentific article

Annotation:

Loose fibrous connective tissue is part of many parenchymal organs, acting as a stroma, forms the papillary layer of the dermis, is part of the membranes of the hollow organs, spinal cord and brain, eyes, blood vessels, heart, nerves, muscles, is located under the basement membrane of epithelium. It performs the following functions: protective, trophic, formative, basic, depreciation, reparative, regulatory. Due to its versatility, loose fibrous connective tissue occupies one of the leading places in the body. Studying the tissues of the human body, we can say that they all have a similar structural organization and consist of cells and noncellular components. Loose fibrous connective tissue cells are represented by different diferons: histiogenic diferon – adventitial cells, fibroblasts, fibrocytes, myofibroblasts, adipocytes, pericytes; hematogenous diferon – macrophages, plasma cells, tissue forms of granulocytes, lymphocytes, mast cells; neurogenic diferon – melanocytes, melanophores. Representatives of various diferons take an active part in maintaining the quantitative and qualitative composition of the intercellular substance. Non-cellular components include basic amorphous matter and fibers. The main amorphous substance has a gelatinous consistency and acts as a metabolic medium; consists of tissue fluid, glycosaminoglycans and proteoglycans. Fibrous structures are represented by collagen, elastic, reticular fibers. Collagen fibers – strong, resistant to stretching and tearing, have no branches, swell when immersed in water; are located in groups that have different directions. The fibers consist of two components – fibrillar and carbohydrate, the synthesis of which is provided by fibroblasts. The structural organization of collagen fibers has five levels. To date, there are about 19 types of collagen, their difference depends on the sequence of amino acids in the polypeptide chains, the quality of carbohydrates and the degree of hydroxylation. The first five types are best studied and it is found that 90% of collagen is the first type. Elastic fibers have the ability to reverse deformation, resistant to alkalis and acids, do not swell when immersed in water, have low strength, can branch and form a network. Most elastic fibers are located in the walls of organs, which are constantly changing volume. The fibers contain the protein elastin and glycoproteins, which are synthesized by fibroblasts and smooth myocytes. Depending on the ratio of amorphous and fibrillar components, the following types are distinguished: elaunine fibers with an equal ratio of the two components; oxytalan fibers consist only of a fibrillar component. Reticular fibers by their physical properties occupy an intermediate position between elastic and collagen, but the chemical composition is closer to collagen, as they include collagen of the third type and carbohydrates. They are able to branch and form a network. Secreted by reticular cells and form the stroma of hematopoietic organs.с

Tags:

loose fibrous connective tissue, cellular, non-cellular components, diferons.

Bibliography:

  1. Drake RL, Wayne Vogl, Mitchell AWM, Gray Henry. Gray’s anatomy for students. Philadelphia: Elsevier; 2015. 1161 p.
  2. Vasudeva N, Mishra S. Textbook of human histology with colour atlas and practical guide. New Delhi: Jaypee Brothers Medical Publishers; 2014. 440 p.
  3. Eroschenko VP. Atlas of Histology with functional correlations. Philadelphia: Wolters Kluwer Health; 2017. 617 p.
  4. Gartner LP, Hiatt JL. Color atlas and text of histology. Philadelphia: Wolters Kluwer Health; 2014. 525 p.
  5. Junqueira LC, Mescher AL. Junqueira’s Basic Histology: text and atlas. 12th ed. New York: McGraw-Hill Medical; 2010. 467 p.
  6. Ross MH, Pawlina W. Histology: a text and atlas: with correlated cell and molecular biology. 17th ed. Philadelphia: Wolters Kluwer Health; 2016. 984 p.
  7. Moore KL, Persaud TVN, Torchia MG. The Developing Human. Clinically Oriented Embryology, 10th Edition. Philadelphia: Elsevier; 2016. 540 p.
  8. Shurygina IA, Shurygin MG, Ayushinova NI, Kanya OV. Fibroblasty i ih rol’ v razvitii soedinitel’noj tkani. Sibirskij medicinskij zhurnal. 2012;3:8-12. [in Russian].
  9. Izatulin VG, Lebedinskij VYu, Kensovskaya IM. Rol’ raznyh pulov fibroblastov v zazhivlenii kozhnoj rany pri giperprolaktinemii. Sibirskij medicinskij zhurnal. 2014;8:34-7. [in Russian].
  10. Kalinina NI, Sysoeva VYu, Rubina KA, Parfenova EV, Tkachuk VA. Mezenhimal’nye stvolovye kletki v processah rosta i reparacii tkanej. Acta naturae. 2011;4(11):32-9. [in Russian].
  11. Lohonina AV, El’chaninov AV, Arutyunyan IV, Pokusaev AS, Makarov AV, Eremina IZ, i dr. Morfofunkcional’naya harakteristika makrofagov embrional’nogo i monocitarnogo proiskhozhdeniya. Geny & Kletki. 2018;13(2):56-62. [in Russian].
  12. Parahonskij AP. Uchastie monocitov-makrofagov v regeneracii tkanej. Sciences of Europe. 2018;29:51-60. [in Russian].
  13. Turicyna EG, Donkova NV. Citomorfologiya organov immunogeneza kur pri mnogokratnyh antigennyh stimulyaciyah. Vestnik KrasGAU. 2011;3:123-7. [in Russian].
  14. Mal’cev VN, Ivanov AA. Vrozhdennyj immunitet: fiziologicheskaya rol’ v normal’nom i obluchennom organizme (obzor literatury). Medicina ekstremal’nyh situacij. 2016;3(57):25-40. [in Russian].
  15. Nauchnaya elektronnaya biblioteka. Monografii, izdannyye v izdatel’stve Rossiyskoy Akademii Yestestvoznaniya. Dostupno: https://www. monographies.ru/ru/book/section?id=9922 [in Russian].
  16. Myagkova MA, Morozova VS. Estestvennye antitela i ih fiziologicheskie funkcii. Institut fiziologicheski aktivnyh veshchestv. Immunopatologiya, allergologiya, infektologiya. 2014;3:75-81. [in Russian].
  17. Nadein KA. Tuchnye kletki kak faktor razvitiya vospalitel’nyh processov v soedinitel’noj tkani. Obzory po klinicheskoj farmakologii i lekarstvennoj terapii. 2012;10(1):22-7. [in Russian].
  18. Gordova VS, Ivanova EP, Sergeeva VE. Tuchnye kletki pri okraske toluidinovym sinim v eksperimente. Vestnik Baltijskogo federal’nogo universiteta im. I. Kanta. Seriya: Estestvennye i medicinskie nauki. 2018;2:97-104. [in Russian].
  19. Cibul’kina VN, Cibul’kin NA. Tuchnaya kletka kak polifunkcional’nyj element immunnoj sistemy. Allergologiya i immunologiya v pediatrii. 2017;2(49):4-11. [in Russian].
  20. Baglaj EO, Dubikov AI. Tuchnye kletki – klyuchevye uchastniki patogeneza immuno-vospalitel’nyh zabolevanij. Nauchno-prakticheskaya revmatologiya. 2014;53(2):182-9. [in Russian].
  21. Tarasova IV. Bazofily, tuchnye kletki i trombocity kak immunnye i effektornye kletki. Allergologiya i immunologiya v pediatrii. 2010 Mart;1(20):32-6. [in Russian].
  22. Maksimyak LA, Kotlukova NP. Rol’ soedinitel’noj tkani serdca v obespechenii ego strukturnyh i funkcional’nyh svojstv, remodelirovanie na fone patologii u detej. Pediatriya. 2016;3:169-74. [in Russian].
  23. Celujko SS, Malyuk EA, Korneeva LS, Krasavina NP. Morfofunkcional’naya harakteristika dermy kozhi i ee izmeneniya pri starenii (obzor literatury). Byulleten’ fiziologii i patologii dyhaniya. 2016;60:111-6. [in Russian].

Publication of the article:

«Bulletin of problems biology and medicine» Issue 2 (156), 2020 year, 14-18 pages, index UDK 611.018.2

DOI: