Maslova G. S.

THE ROLE OF OXIDATIVE STRESS IN DOXORUBICIN-INDUCED LIVER INJURY IN RATS WITH NONALCOHOLIC STEATOHEPATITIS


About the author:

Maslova G. S.

Heading:

CLINICAL AND EXPERIMENTAL MEDICINE

Type of article:

Scentific article

Annotation:

Determining the role of oxidative stress in the detoxification and regenerative liver function violation is of particular importance in order to optimize the prevention of hepatotoxic reactions during chemotherapy (CT). The aim – to investigate the effect of oxidative stress on arginase and ornithine decarboxylase (ODC) activity in liver tissues in rats with anthracycline-induced toxic hepatitis depending on nonalcoholic steatohepatitis (NASH) presence. Object and methods. The studies were performed on 30 white nonlinear adult rats, of which 15 (50%) males, 15 (50%) females, weighing 160-220 g. Experimental animals were divided into 3 groups: I (n=10) – rats with NASH, that received intraperitoneally doxorubicin 5 mg/kg/day with a cumulative dose of 15 mg/kg; II (n=10) – rats without NASH, that were administered doxorubicin similarly to group I; III (n=10) – rats without NASH, that received 0.9% sodium chloride solution 1 ml for 3 days. The TBA reactive substances, catalase, arginase and ODC were determined in the liver homogenate. Study results. In rats of group I with NASH, the doxorubicin appointment led to an increase in the concentration of TBA reactive substances in 3.9 times while the catalase activity decreased in 1.9 times in the liver homogenate compared to control (p<0.05). Activation of free radical production in group I rats was accompanied by a decrease in arginase activity in 1.6 times and ODC in 1.8 times in liver homogenate compared to control (p<0.05). An inverse correlation was found in rats of group I between the content of TBA reactive substances and arginase activity (r=- 0.76; p<0.05). In rats without NASH, doxorubicin administration resulted in a 2.6-fold increase in the concentration of TBA reactive substances in the liver homogenate without disturbances in the antioxidant defense system (p<0.05), which was associated with an inhibition of arginase activity in 1.7 times compared to controls. An inverse correlation was found in group II rats between the content of TBA reactive substances and arginase activity (r=-0.71; р<0.05). Conclusions. The doxorubicin administration is accompanied by oxidative stress, which against the background of NASH leads to impaired detoxification and regenerative liver function.

Tags:

doxorubicin, oxidative stress, arginase, ornithine decarboxylase, nonalcoholic steatohepatitis.

Bibliography:

  1. Lymanets TV, Maslova HS, Skrypnyk IM. Rol dysbalansu systemy oksydu azotu v rozvytku antratsyklinovoi kardiotoksychnosti u khvorykh na hostri leikemii iz suputnoiu ishemichnoiu khvoroboiu sertsia. Svit medytsyny ta biolohii. 2016;3(57):35-40. [in Ukrainian].
  2. Diamanti J, Mezzetti B, Giampieri F, Alvarez – Suarez JM, Quiles JL, Gonzalez-Alonso A, et al. Doxorubicin-induced oxidative stress in rats is efficiently counteracted by dietary anthocyanin differently enriched strawberry (Fragaria × ananassa Duch). J Agric Food Chem. 2014;62(18):3935-43. DOI: 10.1021/jf405721d
  3.  Hilmer SN, Cogger VC, Muller M, Le Couteur DG. The hepatic pharmacokinetics of doxorubicin and liposomal doxorubicin. Drug Metab Dispos. 2004;32(8):794-9.
  4. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2):185-229.
  5. Osama AHA, Suzan BSA. “Ultrastructural Studies on the Changes Induced by Toxic Effect of doxorubicin on rat hepatocyte and protective role of dexrazoxane”. Biosciences, Biotechnology Research Asta. 2008;5(2):551-7.
  6. Prasanna PL, Renu K, Valsala Gopalakrishnan A. New molecular and biochemical insights of doxorubicin-induced hepatotoxicity. Life Sci. 2020;250:117599. DOI: 10.1016/j.lfs.2020.117599
  7. Pugazhendhi A, Edison TNJI, Velmurugan BK, Jacob JA, Karuppusamy I. Toxicity of doxorubicin (Dox) to different experimental organ systems. Life Sci. 2018;200:26-30. DOI: 10.1016/j.lfs.2018.03.023
  8. Salouege I, Ben Ali R, Ben Said D, Elkadri N, Kourda N, Lakhal M, et al. Means of evaluation and protection from doxorubicin – induced cardiotoxicity and hepatotoxicity in rats. J Cancer Res Ther. 2014;10(2):274-8. DOI: 10.4103/0973-1482.136557
  9. Skrypnyk IM, Maslova HS. Otsinka chastoty rozvytku i kharakteru hepatotoksychnykh reaktsii u khvorykh na hostri miieloidni leikemii v dynamitsi induktsii remisii. Suchasna hastroenterolohiia. 2018;2(100):16-22. [in Ukrainian].
  10. Skrypnyk IM, Maslova HS. Nadmirna masa tila i ozhyrinnia yak vazhlyvi faktory ryzyku tsytostatyk-indukovanykh urazhen pechinky u khvorykh na hostri leikemii. Ukrainskyi terapevtychnyi zhurnal. 2018;2:21-5. DOI: https://doi.org/10.30978/UTJ2018-2-21 [in Ukrainian].
  11. Chaudhary D, Khatiwada S, Sah SK, Tamang MK, Bhattacharya S, Jha CB. Effect of doxorubicin on histomorphology of Liver of Wistar Albino Rats. Journal of Pharmacy and Pharmacology. 2016;4:186-90. DOI: 10.17265/2328-2150/2016.04.005
  12. EI-Sayyad HI, Ismail MF, Shalaby FM, Abou-EI-Magd RF, Gaur RL, Fernando A, et al. Histopathological effects of cisplatin, doxorubicin and 5-flurouracil (5-FU) on the liver of male albino rats. Int J Biol Sci. 2009;5:466-73.
  13. Pedrycz A, Boratynski Z, Wieczorski M, Visconti J. Ultrastructural and immunohistochemical evaluation of apoptosis in foetal rat liver after adriamycin administration. Bull Vet Inst Pulawy. 2005;49:475-8.
  14. Stal`naya ID, Garishvili TG. Metod opredeleniya malonovogo dial`degida s pomoshh`yu tiobarbiturovoj kisloty`. Sovremenny`e metody` v biokhimii. Moskva: Mediczina; 1977. s. 66-8. [in Russian].
  15. Korolyuk MA, Ivanova LI, Majorova IG, Tokarev VE. Metod opredeleniya aktivnosti katalazy`. Laboratornoe delo. 1988;1:16-9. [in Russian].
  16. Boiko OA, Lusenko VS. Vyznachennia aktyvnosti arhinazy v tkanynakh. Fiziol zhurn. 1972;XVIII(5):703-5. [in Ukrainian].
  17. Khramov VA. Prostoj metod opredeleniya aktivnosti ornitindekarboksilazy` v smeshannoj slyune cheloveka. Klinicheskaya laboratornaya diagnostika. 1997;4:14-5. [in Russian].
  18. Granik VG. Metabolizm L-arginina (obzor). Khimiko-farmaczevticheskij zhurnal. 2003;37(3):3-20. [in Russian].
  19. Maksymchuk NO, Konovchuk VM. Metabolizm arhininu: perspektyvy klinichnoho vykorystannia (ohliad literatury). Bukovynskyi medychnyi visnyk. 2017;21.1(81):205-10. [in Ukrainian].

Publication of the article:

«Bulletin of problems biology and medicine» Issue 2 (156), 2020 year, 128-132 pages, index UDK 616.36-0,02:599.323.4

DOI: