Vashchenko A. O., Valchuk S. I., Voronkova Yu. S., Shevchenko T. M., Voronkova O. S.

SUSCEPTIBILITY TO ANTIBIOTICS OF STAPHYLOCOCCUS AUREUS STRAINS, ISOLATED FROM UPPER RESPIRATORY TRACT OF HUMAN


About the author:

Vashchenko A. O., Valchuk S. I., Voronkova Yu. S., Shevchenko T. M., Voronkova O. S.

Heading:

MICROBIOLOGY

Type of article:

Scentific article

Annotation:

Abstract. The aim of the research. To investigate the frequency of detection of staphylococci of different species in the microbiota of the human upper respiratory tract and to study the resistance to antibiotics of isolated strains.Object and methods of the research. The object of the research was antibiotic resistance of biofilm forming strains of staphylococci isolated from the nasal cavity of persons with non-allergic rhinitis. Microscopic and bacteriological methods were used to isolate and identify the staphylococci. The study of the ability to form a biofilm was performed on 96-well plastic plates. Antibiotic susceptibility was determined according to CLSI standards. The results of the study and their discussion. It was found that the most common manifestations of non-allergic rhinitis in the microbiota of the nasal cavity are: S. aureus – 64.4% (31), S. epidermidis – 18.8% (9), S. saprophyticus – 10.4% (5) and Staphylococcus spp. – 6.3% (3). 87.5% (42) of the isolated strains of staphylococci were able to form a biofilm after 72 h of cultivation. Of these: all strains of S. epidermidis (9), 90.3% (28) – S. aureus, 80% (4) – S. saprophyticus and 1 – Staphylococcus spp. It was found that more than 50% were resistant to doxycycline. For other antibiotics, the best effect was found for meropenem, to which only 21.4% (6) and 33.3% (3) of S. aureus and S. epidermidis strains were resistant, respectively. Conclusions. The predominance of S. aureus strains among other staphylococci in the microbiota of the nasal cavity in persons with non-allergic rhinitis: 64.6% (31) cases. It was determined that most strains of staphylococci of different species have a tendency to form a biofilm: 87.5% (42) of cases. It has been determined that azithromycin, amoxicillin / clavulanic acid and ofloxacin may be recommended as drugs of choice for the treatment of rhinitis in surveyed contingent. The reserve drug is meropenem, and doxycycline can be used only in determining the sensitivity to it in a particular strain.

Tags:

staphylococci, nasal cavity, non-allergic rhinitis, biofilm, antibioticresistance.

Bibliography:

  1. Agarwal A, Singh KP, Jain A. Medical significance and management of staphylococcal biofilm. FEMS Immunology & Medical Microbiology. 2010;58(2):147-160. DOI: 10.1111/j.1574-695X.2009.00601.x.
  2. Al-Mutairi D, Kilty SJ. Bacterial biofilms and the pathophysiology of chronic rhinosinusitis. Current Opinion in Allergy and Clinical Immunology. 2011;11(1):18-23. DOI: 10.1097/ACI.0b013e3283423376.
  3. Andersson DI, Hughes D. Selection and transmission of antibiotic-resistant bacteria. Microbiol Spectr. 2017;5(4):337-340. DOI: 10.1128/ microbiolspec. MTBP-0013-2016.
  4. Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation and roles in human disease. Virulence. 2011;2(5):445-459. DOI: 10.4161/viru.2.5.17724.
  5. Chen BJ, Xie XY, Ni LJ, Dai XL, Lu Y, Wu XQ, et al. Factors associated with Staphylococcus aureus nasal carriage and molecular characteristics among the general population at a Medical College Campus in Guangzhou, South China. Ann Clin Microbiol Antimicrob. 2017;16(1):28. DOI: 10.1186/s12941-017-0206-0.
  6. Cole AL, Sundar M, Lopez A, Forsman A, Yooseph S, Cole AM. Identification of Nasal Gammaproteobacteria with Potent Activity against Staphylococcus aureus: Novel Insights into the «Noncarrier» State. mSphere. 2021;6(1):e01015-20. DOI: 10.1128/mSphere.01015-20.
  7. Ghellai L, Hassaine H, Klouche N, Abdelmounaim K. Detection of biofilm formation of a collection of fifty strains of Staphylococcus aureus isolated in Algeria at the University Hospital of Tlemcen. Journal of Bacteriology Research. 2014;6(1):1-6. DOI: 10.5897/JBR2013.0122.
  8. Haaber J, Penades JR, Ingmer H. Transfer of Antibiotic Resistance in Staphylococcus aureus. Trends Microbiol. 2017;25(11):893–905. DOI: 10.1016/j.tim.2017.05.011.
  9. Hiltunen AK, Savijoki K, Nyman TA, Miettinen I, Ihalainen P, Peltonen J, et al. Structural and Functional Dynamics of Staphylococcus aureus Biofilms and Biofilm Matrix Proteins on Different Clinical Materials. Microorganisms. 2019;7(12):584. DOI: 10.3390/microorganisms7120584.
  10. Manner S, Goeres DM, Skogman M, Vuorela P, Fallarero A. Prevention of Staphylococcus aureus biofilm formation by antibiotics in 96-Microtiter Well Plates and Drip Flow Reactors: critical factors influencing outcomes. Sci Rep. 2017;7:43854. DOI: 10.1038/srep43854.
  11. Ogonowska P, Gilaberte Y, Barańska-Rybak W, Nakonieczna J. Colonization With Staphylococcus aureus in Atopic Dermatitis Patients: Attempts to Reveal the Unknown. Front Microbiol. 2021;11:567090. DOI: 10.3389/fmicb.2020. 567090.
  12. Clinical and Laboratory Standarts Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 11th ed. Wayne: CLSI; 2018. 13 p. Available from: https://clsi.org/media/1928/m07ed11_sample.pdf.
  13. Ministerstvo zdravookhraneniya SSSR. Ob unifikatsii mikrobiologicheskih (bakteriologicheskih) metodov issledovaniya, primenyaemyih v kliniko-diagnosticheskih laboratoriyah lechebno-profilakticheskih uchrezhdeniy [Internet]. Moskva: MZ SSSR; 1985. Dostupno: https:// docs.cntd.ru/document/ 420245293. [in Russian].
  14. Singh R, Ray Р, Das А, Sharma М. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. Antimicrob Chemother. 2010;65(9):1955-1958. DOI: 10.1093/jac/dkq257.
  15. Wolcott R, Costerton JW, Raoult D, Cutler SJ. The polymicrobial nature of biofilm infection. Clinical Microbiology and Infection. 2013;19(2):107-112. DOI: doi.org/10.1111/j.1469-0691.2012.04001.x.
  16. Harifulina MA, Voronkova OS, Shevchenko TM, Vinnikov AI. Kharakterystyka stafilokokiv ta yikh rolʹ u patolohiyi ditey. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Med. 2014;5(2):115-120. DOI: 10.15421/021422. [in Ukrainian].
  17. Kunelskaya NL, Turovskiy AB, Kolbanova IG, Popova IA. Antibakterialnaya terapiya hronicheskogo sinusita. RMZh. 2016;21:1411-1416. [in Russian].
  18. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121-141. DOI: 10.1016/j.cell.2014.03.011.
  19. Yang D, Xing Y, Song X, Qian Y. The impact of lung microbiota dysbiosis on inflammation. Immunology. 2020;159(2):156-166. DOI: 10.1111/imm.13139.

Publication of the article:

«Bulletin of problems biology and medicine» Issue 2 (160), 2021 year, 177-180 pages, index UDK 579.864:616.1

DOI: