RIA – CAUSATIVE AGENTS OF WOUND INFECTIONS P

SENSITIVITY TO ANTIBACTERIAL DRUGS AND PHENOTYPIC DETERMINATION OF RESISTANCE FACTORS IN STRAINS OF NON-FERMENTING GRAM-NEGATIVE BACTERIA – CAUSATIVE AGENTS OF WOUND INFECTIONS


About the author:

RIA – CAUSATIVE AGENTS OF WOUND INFECTIONS P

Heading:

MICROBIOLOGY

Type of article:

Scentific article

Annotation:

A wound is a frequent primary focus of microbial contamination, an ideal environment for the growth and reproduction of microorganisms that have entered it and support the infectious process that prevents healing. At the same time, the integrity of the adjacent skin, mucous membranes is violated and the surface of the wound is contaminated with air microbiota, the resident microbiota of the hospital staff or microorganisms from the surface of the adjacent tissues of the patient himself. Were studied 103 strains of UPM isolated from the wounds of patients who were treated in the surgical department of the KNP KOR “Kiev Regional Clinical Hospital”. Non-fermenting gram-negative bacteria accounted for 15.5% of all isolated strains. Aeruginosa strains were distinguished by a high frequency of resistance to cephalosporin antibiotics: ceftazidime and cefepime (11.1 ± 10.5% of susceptible strains). The main enzymatic mechanism of resistance of UFHNP to carbapenems is the synthesis of carbapenemases such as metallo-beta-lactamases (MβL), which in recent years have spread widely among resistant strains of UFHNB around the world. We found an extremely high level of MβL distribution among P. aeruginosa and A. baumannii strains isolated from wounds in patients from the surgical department – 55.5 ± 16.5% and 57.1 ± 18.7% of producer strains, respectively. In the group of studied strains of NFHNB isolated from wounds in patients from the surgical department, a high percentage of multidrug-resistant strains was found. This gives grounds to consider NFHNB the most dangerous group of wound infection pathogens today with a low prognosis for effective antibiotic therapy. Carbapenems, which over the past decades have been the drugs of choice for the treatment of infections caused by UFHNB, due to the massive spread of carbapenemases among these microorganisms, can no longer be considered appropriate for prescribing as empirical therapy and for the treatment of critical conditions.

Tags:

are a surgical infection, antibacterial preparations, firmness.

Bibliography:

  1. Wound Management. Best practice guideline sindisaster situations. World Health Organisation. WHO/EHT/CPR 2005. 56 p.
  2. Slyotov AM, Sivakon SV. Osobennosti vozbuditelei ranevoi infektsii v travmatologicheskom statsionare. Vestnik Penzenskogo gosudarstvennogo universiteta. 2013;2:65-9. [in Russian].
  3. Dyachenko SV, Bobrovnikova MY, Slobodenyuk YeV. Bakteriologicheskii monitoring ranevykh infektsii v mnogoprofilnom khirurgicheskom statsionare. Тikhookeanskii meditsinskii zhurnal. 2015;1:80-2. [in Russian].
  4. Potochylova VV, Babak SI. Uskladneni infektsii oblasti khirurhichnoho vtruchannia ta porivnialʼna kharakterystyka chutlyvosti mikroorganizmiv do antybiotykiv rezervu u viddilenniakh khirurhichnoho profiliu. Scientific Journal «Science Rise». 2015;8/3(13):47-52. [in Ukrainian].
  5. Gordinskaya NA, Sabirova EV, Abramova NV. Znachenie mikroorganizmov semeistva Enterobacteriaceae v etiologii ranevoi ozhogovoy infektsii. Fundamentalʼnye issledovaniya. 2013;12:191-4. [in Russian].
  6. Weintrob AC, Murray CK, Lloyd B. Active surveillance for asymptomatic colonization with multidrug-resistant gram-negative Bacilliamong Injured Service Members – A Three-Year Evaluation. MSMR. 2013;20(8):17-22.
  7. Gilbert LJ, Murray CK, Yun HC. Multidrug-resistant gram-negative bacilli colonization riskfactors amongtrauma patients. Diagnostic Microbiology and Infectious Disease. 2016;84:358-60.
  8. Rammohan A, Cherukuri S, Sathyanesanand J, Palaniappan F. Acinetobacter: a war zone in the hospital. British Microbiology Research Journal. 2015;10:1-11.
  9. Howard A, O’Donoghue M, Feeneyand A, Sleator RD. Acinetobacter baumannii – anemerging opportunistic pathogen. Virulence. 2012;l.3:243- 50.
  10. Davis KA, Moran KA, McAllister CK, Gray PJ. Multidrug-resistant Acinetobacter extremity infectionsin soldiers. Emerg Infect Dis. 2005;11(8):1218-24.
  11. Nesterenko OM, Shcherbyna YuV, Boitsun IM. Suchasni pidkhody do vyboru antybiotykoterapii shpytalʼnoi khiruhichnoi infektsii, yaka sprychynena Аcinetobacter baumannii. Klinichna anesteziolohiia ta intensyvna terapiia. 2015;2(6):28-37. [in Ukrainian].
  12. Laksha AM. Likuvannia postrazhdalykh z vohnepalnymy poranenniamy mʼiakyh tkanyn kintsivok. Litopys travmatolohii ta ortopedii. 2015;1- 2:31-3. [in Ukrainian].
  13. Syplyvyi VO, Tsyhanenko AYa, Kon KV. Polirezystentnistʼ sered zbudnykiv khirurhichnykh infektsii. Kharkivska khirurhichna shkola. 2012;2(53):80-3. [in Ukrainian].
  14. World Health Organisation. 2014 Global Reporton Surveillance. Available from: http://apps.who.int/iris/bitstre am/10665/112642/1/9789241564748_eng.pdf
  15. European Centrefor Disease Preventionand Control. 2014 Annual epidemiological report. Antimicrobial resistance and healthcare – associated infections. Available from: http://ecdc.europa.eu/en/publications/Publications/antimicrobial-resistance-annual-epidemiological-report.pdf
  16. Baquero F, Coque TM. Allodemics. The Lancet Infectious Diseases. 2002;2:591-2.
  17. Bassetti M, Pecori D, Sibani M. Epidemiology and treatment of MDR Enterobacteriaceae. Curr Treat Options Infect Dis. 2015;7:291-316.
  18. Pilmis B, Delory T, Groh M. Extended-spectrumbeta-lactamase-producing Enterobacteriaceae (ESBL-PE) infections: are carbapenem alternative sachievableindaily practice? International Journal of Infectious Diseases. 2015;1:20-6.
  19. Hanson ND. AmpC β-lactamases: what do we need to know for the future? Journal of Antimicrobial Chemotherapy. 2003;52:2-4.
  20. Polishko TM, Skliar TV, Krysenko OV. β-lactamazy klinichnykh izoliativ rodyny Еnterobacteriaceae. Mikrobiolohichnyi zhurnal. 2011;73- 2:20-5. [in Ukrainian].
  21. Pokas OV, Loskutova MM, Bartsytska IF. Poshyrennia β-laktamaz rozshyrenoho spektru dii sered mnozhynnorezystentnykh do antybiotykiv enterobakterii. Laboratorna diahnostyka. 2012;1(59):22-7. [in Ukrainian].
  22. Doi Y, Paterson DL. Carbapenemase-producing Enterobacteriaceae. Semin Respir Crit Care Med. 2015;36(1):74-84.
  23. European Centre for Disease Prevention and Control. Carbapenemase-producing bacteriain Europe: interim results from the European Survey on carbapenemase-producing Enterobacteriaceae (EuSCAPE) project. Stockholm: ECDC; 2013.
  24. Sukhorukova MV, Edelshtein MV, Skleenova EYu. Antibiotikorezistentnostʼ nosokomialnyh shtamov Enterobacteriaceae v statsionarah Rossii: rezultaty mnogotsentrovogo epidemiologicheskogo issledovania MARAFON v 2011-2012 gg. Klinicheskaia mikrobiologia i antimikrobnaya himioterapiya. 2014;16(4):254-64. [in Russian].
  25. Edelshtein MV, Skleenova EYu, Shevchenko OV. Rasprostranennostʼ i molekulyarnaya epidemiologiya gramotritsatelnyh bakyeriy, produtsiruyushchih metallo-β-laktamazy, v Rossii, Belarusi i Kazahstane. Klinicheskaya mikrobiologiya i antimikrobnaya himioterapia. 2012;14(2):132-52. [in Russian].
  26. Osipov VA, Tapalʼskiy DV, Skleenova YeYu, Eydelshteyn MV. Metallo-beta-laktamazy gramotritsatelnykh bakteriy: rastushchaya problema v mire i v Belarusi. Meditsinskie novosti. 2013;2:84-8. [in Russian].
  27. Feldman YuM, Mahaneva LG, Shapiro AV, Kuzmenko VD. Kolichestvennoe opredelenie bakteriy v klinicheskih materialah. Lab. Delo. 1984;10:616-9. [in Russian].
  28. Prikaz № 535 ot 22.04.1985. Ob unifikatsii mikrobiologicheskih (bakteriolohicheskih) metodov issledovaniya, primenyaemyh v klinikodiagnosticheskih laboratoriyah lechebno-profilacticheskih uchrezhdenii. Мoskva: 1985. 126 s. [in Russian].
  29. Informatsiinyi lyst. Bakeriolohichnyi kontrol pozhyvnyh seredovyshch: Informatsiinyi lyst № 05.4.1/1670. Kyiv: 2000.
  30. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 10, 2020. Available from: http://www.eucast.org
  31. Shevchenko OV, Eydelshteyn MV, Stepanova MN. Metallo-β-laktamazy: znachenie i metody vyiavleniya u gramotritsatelnyh nefermentiruyushchih bakteriy. Кlinicheskaya mikrobiologiya i antimikrobnaya himioterapiya. 2007;9(3):211-8. [in Russian].
  32. Zowalaty ME, Thani AA, Webster TJ. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol. 2015;16:1-24.
  33. Gupta V, Garg R, Garg S. Coexistence of extended spectrum beta-lactamases, ampC beta-lactamases and metallo-beta-lactamases in Acinetobacter baumannii from burns patients: a report from a tertiary care centre of India. Annals of Burns and Fire Disasters. 2013;26:189-92.

Publication of the article:

«Bulletin of problems biology and medicine» Issue 4 (158), 2020 year, 259-263 pages, index UDK 579.61+616-008.87/-001.4+616.036.8/615.281.9

DOI: