Kaleinikova O. M., Sribna V. O., Vinogradova-Anyk O. O., Voznesenskaya T. Y., Blashkiv T. V.

REPRODUCTION AND SPERM DNA FRAGMENTATION


About the author:

Kaleinikova O. M., Sribna V. O., Vinogradova-Anyk O. O., Voznesenskaya T. Y., Blashkiv T. V.

Heading:

LITERATURE REVIEWS

Type of article:

Scentific article

Annotation:

The aim of this work was to search and analyze literature data about sperm DNA fragmentation and its role in reproduction. There are reports that men of couples with infertility have more sperm with DNA damage. If the number of sperm DNA damage exceeds 25-30% the probability of in vivo fertilization and intrauterine insemination is estimated to be close to zero. After the IVF, in the case of 20% of sperm with DNA fragmentation, the rate of spontaneous abortion increases. At the same time, there are studies whose authors did not find a significant relationship between DNA fragmentation and the results of fertilization or embryo quality after in vitro fertilization. Thus, the fact of the decrease of fertility, the efficiency of the methods of IVF and the increased risk of birth defects can be explained by the increase in the level of sperm DNA fragmentation. Since the appearance of breaks in the structure of DNA during replication is an inevitable process during spermatogenesis, there are normally mechanisms of biological repair of the male genome. There is evidence that the egg is to some extent capable of repairing the damage of sperm DNA that has fertilized it. It has been suggested that attempts at inefficient egg reparation of sperm DNA may have a mutagenic effect, leading to birth defects. Thus, there are currently no clinically relevant standards for the evaluation of chromatin damage (DNA fragmentation) and sperm repair. It is believed that apoptosis, which is a sign of DNA fragmentation, is the end result of various pathological conditions and the degradation system, which normally controls spermatogenesis. However, some researchers believe that such a parameter of spermogram, as the “quality” of sperm is not always associated with the amount of DNA fragmentation. And sperm, morphologically rated as “normal”, may have damaged DNA. The motility and viability of sperm are thought to be related to their DNA fragmentation index. It is also believed that DNA fragmentation of morphologically normal spermatozoa determines a particularly negative impact on the quality of embryos and the results of IVF cycles. Thus, it is not completely clear whether such indicators of a standard spermogram are related to, and how related to, the concentration, motility, morphology of spermatozoa and anomalies of their chromatin. However, the main cause of the negative impact of reactive oxygen species (ROS) on sperm DNA is the direct action of active radicals on protons-protected areas of DNA and, after cell damage, mediated by endonucleasemediated induction of apoptosis. Among the factors that lead to DNA damage as a result of oxidative stress include: testicular torsion, lifestyle (excess body weight, smoking, high physical activity), lack of natural antioxidants, infectious-inflammatory processes of the reproductive tract and etc. Conclusion. The role of disorders of the chromatin structure – sperm DNA fragmentation in reproduction needs further detailed study.

Tags:

fertility, DNA fragmentation, sperm.

Bibliography:

  1. Simon L, Castillo J, Oliva R, Lewis S. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod Biomed Online. 2011;23(6):724-34. DOI: 10.1016/j.rbmo.2011.08.010
  2. Simon L, Murphy K, Shamsi M, Liu L, Emery B, Aston K, et al. Paternal influence of sperm DNA integrity on early embryonic development. Hum Reprod. 2014;29(11):2402-12. DOI: 10.1093/humrep/deu228
  3. Zini A, Meriano J, Kader K, Jarvi K, Laskin C, Cadesky K. Potential adverse effect of sperm DNA damage on embryo quality after ICSI. Hum Reprod. 2005;20(12):3476-80.
  4. Sigman M. Testicular versus ejaculated sperm should be used for intracytoplasmic sperm injection (ICSI) in cases of infertility associated with sperm DNA fragmentation. Int Braz J Urol. 2018;44(4):676-9. DOI: 10.1590/S1677-5538.IBJU.2018.04.04
  5. Arafa M, AlMalki A, AlBadr M, Burjaq H, Majzoub A, AlSaid S, et al. ICSI outcome in patients with high DNA fragmentation: Testicular versus ejaculated spermatozoa. Andrologia. 2018;50(1). DOI: 10.1111/and.12835.
  6. Irvine D, Twigg J, Gordon E, Fulton N, Milne P, Aitken R. DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 2000;21(1):33-44.
  7. Mantas D, Angelopoulou R, Msaouel P, Plastira K. Evaluation of sperm chromatin quality and screening of Y chromosome microdeletions in Greek males with severe oligozoospermia. Arch Androl. 2007;53(1):5-8.
  8. Santi D, Spaggiari G, Simoni M. Sperm DNA fragmentation index as a promising predictive tool for male infertility diagnosis and treatment management – meta-analyses. Reprod Biomed Online. 2018;37(3):315-26. DOI: 10.1016/j.rbmo.2018.06.023
  9. Virro M, Larson-Cook K, Evenson D. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril. 2004;81:1289-95.
  10. Ozmen B, Koutlaki N, Youssry M, Diedrich K, Al-Hasani S. DNA damage of human spermatozoa in assisted reproduction: origins, diagnosis, impacts and safety. Reprod Biomed Online. 2007;14(3):384-95.
  11. Małgorzata K, Depa-Martynów M, Butowska W, Filipiak K, Pawelczyk L, Jedrzejczak P. Human spermatozoa ultrastructure assessment in the infertility treatment by assisted reproduction technique. Arch Androl. 2007;53(6):297-302.
  12. Franco J, Mauri A, Petersen C, Massaro F, Silva L, Felipe V, et al. Large nuclear vacuoles are indicative of abnormal chromatin packaging in human spermatozoa. Int J Androl. 2012 Feb;35(1):46-51. DOI: 10.1111/j.1365-2605.2011.01154.x
  13. Watanabe S, Tanaka A, Fujii S, Mizunuma H, Fukui A, Fukuhara R, et al. An investigation of the potential effect of vacuoles in human sperm on DNA damage using a chromosome assay and the TUNEL assay. Hum Reprod. 2011;26(5):978-86. DOI: 10.1093/humrep/der047
  14. Bragina EE, Bocharova EN. Kolichestvennoe elektronno-mikroskopicheskoe issledovanie spermatozoidov pri diagnostike muzhskogo besplodiya. Andrologiya i genitalnaya hirurgiya. 2014;1:41-50. [in Russian].
  15. Kennedy C, Ahlering P, Rodriguez H, Levy S, Sutovsky P. Sperm chromatin structure correlates with spontaneous abortion and multiple pregnancy rates in assisted reproduction. Reprod Biomed Online. 2011;22(3):272-6. DOI: 10.1016/j.rbmo.2010.11.020
  16. Simon L, Lutton D, McManus J, Lewis S. Sperm DNA damage measured by the alkaline Comet assay as an independent predictor of male infertility and in vitro fertilization success. Fertil Steril. 2011;95(2):652-7. DOI: 10.1016/j.fertnstert.2010.08.019
  17. Simon L, Liu L, Murphy K, Ge S, Hotaling J, Aston K, et al. Comparative analysis of three sperm DNA damage assays and sperm nuclear protein content in couples undergoing assisted reproduction treatment. Hum Reprod. 2014;29(5):904-17. DOI: 10.1093/humrep/deu040
  18. Bungum M, Bungum L, Giwercman A. Sperm chromatin structure assay (SCSA): a tool in diagnosis and treatment of infertility. Asian J Androl. 2011;13(l):69-75.
  19. Zini A, Boman J, Belzile E, Ciampi A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod. 2008;23(12):2663-8. DOI: 10.1093/humrep/den321
  20. Collins J, Barnhart K, Schlegel P. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril. 2008;89:823-31.
  21. Sadeghi M, Lakpour N, Heidari-Vala H, Hodjat M, Amirjannati N, Hossaini Jadda H, et al. Relationship between sperm chromatin status and ICSI outcome in men with obstructive azoospermia and unexplained infertile normozoospermia. Rom J Morphol Embryol. 2011;52(2):645-51.
  22. Sharbatoghli M, Valojerdi M, Amanlou M, Khosravi F, Jafar-abadi M. Relationship of sperm DNA fragmentation, apoptosis and dysfunction of mitochondrial membrane potential with semen parameters and ART outcome after intracytoplasmic sperm injection. Arch Gynecol Obstet. 2012;286(5):1315-22. DOI: 10.1007/s00404-012-2440-1
  23. Beshay V, Bukulmez O. Sperm DNA damage: how relevant is it clinically? Curr Opin Obstet Gynecol. 2012;24(3):172-9.
  24. Tavalaee M, Nasr-Esfani M. Etiology and evaluation of sperm chromatine anomalies. Int J Fertil Steril. 2008;2(1):1-8.
  25. Ajina T, Ammar O, Haouas Z, Sallem A, Ezzi L, Grissa I, et al. Sakly W. Assessment of human sperm DNA integrity using two cytochemical tests: Acridine orange test and toluidine blue assay. Andrologia. 2017;49(10). DOI: 10.1111/and.12765
  26. Evenson DP. The Sperm Chromatin Structure Assay (SCSA(®)) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Anim Reprod Sci. 2016;169:56-75. DOI: 10.1016/j.anireprosci.2016.01.017
  27. Robinson L, Gallos I, Conner S, Rajkhowa M, Miller D, Lewis S, et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod. 2012;27(10):2908-17. DOI: 10.1093/humrep/des261
  28. Meseguer M, Santiso R, Garrido N, García-Herrero S, Remohí J, Fernandez J. Effect of sperm DNA fragmentation on pregnancy outcome depends on oocyte quality. Fertil Steril. 2011;95(1):124-8. DOI: 10.1016/j.fertnstert.2010.05.055
  29. Roque M, Esteves S. Effect of varicocele repair on sperm DNA fragmentation: a review. Int Urol Nephrol. 2018;50(4):583-603. DOI: 10.1007/ s11255-018-1839-4
  30. Sakkas D, Alvarez J. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93(4):1027-36.
  31. Schulte R, Ohl D, Sigman M, Smith G. Sperm DNA damage in male infertility: etiologies, assays, and outcomes. J Assist Reprod Genet. 2010;27(1):3-12. DOI: 10.1007/s10815-009-9359-x
  32. Aitken R, Findlay J, Hutt K, Kerr J. Apoptosis in the germ line. Reproduction. 2011;141(2):139-50. DOI: 10.1530/REP-10-0232
  33. Aitken R, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction. 2001;122:497-506.
  34. Oosterhuis G, Mulder A, Kalsbeek-Batenburg E, Lambalk C, Schoemaker J, Vermes I. Measuring apoptosis in human spermatozoa: a biological assay for semen quality? Fertil Steril. 2000;74(2):245-50.
  35. Karabulut S, Demiroğlu-Zergeroğlu A, Yılmaz E, Kutlu P, Keskin İ. Effects of human sperm cryopreservation on apoptotic markers in normozoospermic and non-normozoospermic patients. Zygote. 2018;26(4):308-13. DOI: 10.1017/S0967199418000254
  36. Cohen-Bacrie P, Belloc S, Ménézo YJ, Clement P, Hamidi J, Benkhalifa M. Correlation between DNA damage and sperm parameters: a prospective study of 1,633 patients. Fertil Steril. 2009;91(5):1801-5. DOI: 10.1016/j.fertnstert.2008.01.086
  37. Saylan A, Erimsah S. High quality human sperm selection for IVF: A study on sperm chromatin condensation. Acta Histochem. 2019;121(7):798- 803. DOI: 10.1016/j.acthis.2019.07.006
  38. Benchaib M, Braun V, Lornage J, Hadj S, Salle B, Lejeune H, et al. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod. 2003;18(5):1023-8.
  39. Muratori M, Marchiani S, Tamburrino L, Baldi E. Sperm DNA Fragmentation: Mechanisms of Origin. Adv Exp Med Biol. 2019;1166:75-85. DOI: 10.1007/978-3-030-21664-1_5
  40. Salsabili N, Mehrsai A, Jalalizadeh B, Pourmand G, Jalaie S. Correlation of sperm nuclear chromatin condensation staining method with semen parameters and sperm functional tests in patients with spinal cord injury, varicocele, and idiopathic infertility. Urol J. 2006;3(1):32-7.
  41. Chi H, Chung D, Choi S, Kim J, Kim G, Lee J, et al. Integrity of human sperm DNA assessed by the neutral comet assay and its relationship to semen parameters and clinical outcomes for the IVF-ET program. Clin Exp Reprod Med. 2011;38(1):10-7. DOI: 10.5653/cerm.2011.38.1.10
  42. Avendaño C, Franchi A, Duran H, Oehninger S. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril. 2010;94(2):549-57. DOI: 10.1016/j.fertnstert.2009.02.050
  43. Esteves S, Roque M, Bradley C, Garrido N. Reproductive outcomes of testicular versus ejaculated sperm for intracytoplasmic sperm injection among men with high levels of DNA fragmentation in semen: systematic review and meta-analysis. Fertil Steril. 2017;108(3):456-67. DOI: 10.1016/j.fertnstert.2017.06.018
  44. Seli E, Sakkas D. Spermatozoal nuclear determinants of reproductive outcome: implications for ART. Hum Reprod Update. 2005;11(4):337-49.
  45. Delbes G, Hales B, Robaire B. Toxicants and human sperm chromatin integrity. Mol Hum Reprod. 2010;16(1):14-22.
  46. Tu H, Zini A. Finasteride-induced secondary infertility associated with sperm DNA damage. Fertil Steril. 2011;95(6):2125:13-4.
  47. Abdelbaki S, Sabry J, Al-Adl A, Sabry H. The impact of coexisting sperm DNA fragmentation and seminal oxidative stress on the outcome of varicocelectomy in infertile patients: A prospective controlled study. Arab J Urol. 2017;15(2):131-9. DOI: 10.1016/j.aju.2017.03.002
  48. Tremellen K. Oxidative stress and male infertility – a clinical perspective. Hum Reprod Update. 2008;14:243-58.
  49. Zini A, Al-Hathal N. Antioxidant therapy in male infertility: fact or fiction? Asian J Androl. 2011;13(3):374-81.
  50. Showell M, Mackenzie-Proctor R, Brown J, Yazdani A, Stankiewicz M, Hart R. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2014;12:CD007411. DOI: 10.1002/14651858.CD007411.pub3
  51. Bozhedomov VA, Gromenko DS, Ushakova IV. Oksidativnyiy stress spermatozoidov v patogeneze muzhskogo besplodiya. Urologiya. 2009;2:51- 6. [in Russian].

Publication of the article:

«Bulletin of problems biology and medicine» Issue 4 Part 1 (153), 2019 year, 31-34 pages, index UDK 616.699-07:577.2.088.7

DOI: