Zavhorodnia V. A.

CHANGES IN CENTRAL HAEMODYNAMICS IN RESPIRATORY HYPOCAPNIA IN YOUNG MEN WITH DIFFERENT BASELINE PetCO2


About the author:

Zavhorodnia V. A.

Heading:

PHYSIOLOGY

Type of article:

Scentific article

Annotation:

Hyperventilation is an intense breathing that exceeds the needs of the body and causes hypocapnia. There are insufficient studies of the individual features of haemodynamic parameter changes when testing for hyperventilation and after it; therefore, the changes of the central haemodynamics are analyzed while testing the regulated respiration at a rate of 30 cycles per minute in healthy young men.PetCO2 level was determined in 81 men on Datex Normocap capnograph; haemodynamic indicators were found with KHAI-medica rheography (Ukraine) for 5 minutes at rest, for 10 minutes of the regulated respiration at a rate of 30 cycles per minute and 40 minutes of recovery period after the test. The reactivity of most haemodynamics features with the regulated respiration were characterized with significant individual features and depended on baseline PetCO2 . The highest values of central hemodynamics in the background were observed in the men with baseline РеtСО2 from 38.5 to 41.74 mm Hg. Thus, the duration of the R-R intervals was 910 ± 30.7 ms, the stroke index was 37.34 ± 2.89 ml·m-2, the cardiac index corresponded to 2.4 ± 0.15 l·m-2·min-1, total peripheral resistance was 1944 ± 166.6 dy·s-1·cm-5 and volumetric emission rate was 257.1 ± 12.1 ml∙s-1. At the end of the test with hyperventilation, the persons of this group had the highest reactivity of the parameters of the cardiac index (0.42 ± 0.10 l·m-2·min-1, p <0.05), the total peripheral resistance (388 ± 109.2 dy· s -1·cm-5, p <0.05) and myocardial tension index (1.62 ± 1.05%, p <0.05). Investigated with an initial level of PetCO2 up to 38.5 mm Hg. differ in the lowest values in the background: t-R-R intervals were equal to 848 ± 27.4 ms, the shock index was 32.36 ± 2.42 ml·m-2, the cardiac index corresponded to 2.23 ± 0.11 l·m-2·min-1 and the volumetric emission rate is 227.0 ± 9.6 ml·s-1. And also in men of this group the least shifts of hemodynamic parameters under the influence of a hypocapnia are observed. Thus, the individual and typological differences of the men can increase the diagnostic value of the methods of analysis and evaluation of cardiovascular system and determine new approaches in preventive medicine and health insurance.

Tags:

hyperventilation, hypocapnia, PetCO2 , central haemodynamics, cardiodynamics.

Bibliography:

  1. Averko NN. Funktsionalnaya serdechno-sosudistaya patologiya. Patologiya krovoobrascheniya i kardiohirurgiya. 2010;2:62-7. [in Russian].
  2. Fischer K, Guensch DP, Friedrich MG. Response of myocardial oxygenation to breathing manoeuvres and adenosine infusion. Eur Heart J Cardiovasc Imaging. 2015;16(4):395-401. Available from: https:doi: 10.1093/ehjci/jeu202
  3. Bisconti AV, Devoto M, Venturelli M, Bryner R, Olfert IM, Chantler PD, et al. Respiratory muscle training positively affects vasomotor responsein young healthy women. PLoSOne. 2018;13(9):e0203347. DOI: 10.1371/journal.pone.0203347
  4.  Tsyvunin VV, Drohovoz SM, Shtryhol SIu, Shtroblia AL. Bezpechna ta efektyvna alternatyva dopinhu: vykorystannia karboksyterapii v sporti. Farmakolohiia ta likarska toksykolohiia. 2018;1(57):13-20. [in Ukrainian].
  5. Hunter CL, Silvestri S, Ralls G, Bright S, Papa L. The sixth vital sign: prehospital end-tidal carbon dioxide predicts in-hospital mortality and metabolic disturbances. Am J Emerg Med. 2014;32(2):160-5. Available from: https:doi: 10.1016/j.ajem.2013.10.049.
  6. Kim KW, Choi HR, Bang SR, Lee JW. Comparison of end-tidal CO2 measured by transportable capnometer (EMMA™ capnograph) and arterial pCO2 in general anesthesia. J Clin Monit Comput. 2016;30(5):737-1. Available from: https:doi:10.1007/s10877-015-9748-x
  7. Glantz SA. Primer of biostatistics. 7th edition, Mc Graw-Hill: Medical, New York; 2012. 320 p.
  8. Kubichek WG, Patterson RP, Wetsol DA. Impedanse cardiography as a noninvasive method of monitoring cardiac function and other parameters of the cardiovascular system. Ann. N.Y. Acad. Sci. 1970;2:724-32.
  9. Klabunde R. Cardiovascular physiology concepts. Philadelphia: Lippincott Williams & Wilkins; 2012. 243 p.
  10. Oldenburg O, Spießhöfer J, Fox H, Bitter T, Horstkotte D. Cheyne-Stokes respiration in heart failure: friend or foe? Hemodynamic effects of hyperventilation in heart failure patients and healthy volunteers. Clinical Researchin Cardiology. 2015;104(4):328-33.
  11. Zavhorodnia VA, Kovalenko SO, Rybalko AV, Tokar SI. Vplyv dykhannia na kolyvannia tryvalosti intervalu RR ta sertsevoho vykydu. Visnyk Cherkaskoho universytetu. 2016;1:41-50. [in Ukrainian].
  12. Kulykov VP, Kuznetsova DV, Zaria AN. Tserebrovaskuliarnaia y kardyovaskuliarnaia SO2 -reaktyvnost v patoheneze arteryalnoi hypertenzyy. Arteryalnaia hypertenzyia. 2017;23(5):433-46. Dostupno: https:doi: 10.18705/1607-419X-2017-23-5-433-446.-50. [in Russiаn].
  13. Zavhorodnia VA, Kovalenko SO, Kudiy LI. Influence of hyperventilation on the dynamic of Carbon (IV) Oxide in alveolarair. Cherkasy University Bulletin. 2018;2:34-9.
  14. Kovalenko SO. Rehuliatorni rytmy hemodynamiky ta yikh indyvidualni osoblyvosti u liudei [dysertatsiia]. Cherkasy: Cherk. nats. univ; 2009. 372 s. [in Ukrainian].
  15. Yoon SH, Zuccarello M, Rapoport RM. РCO2 and pH regulation of cerebral blood flow. Front. Physiol. 2012;3:365. Available from: https://doi. org/10.3389/fphys.2012.00365
  16. Makarenkova EA, Malahov MV, Melnikov AA, Vilkul AD. Sravnitelnyiy analiz vliyaniya proizvolnoy giperventilyatsii i fizicheskoy nagruzki na funktsiyu ravnovesiya cheloveka. Yaroslavskiy pedagogicheskiy vestnik. 2012;3(4):145-8. [in Russian].

Publication of the article:

«Bulletin of problems biology and medicine» Issue 4 Part 1 (153), 2019 year, 358-363 pages, index UDK 612.13+612.213+612.223.11

DOI: