Нефьодова О. О., Янушкевич К. С., Кушнарьова К. А., Колосова І. І., Великодна-Танасійчук О. В., Адегова Л. Я.

ПАТОФІЗІОЛОГІЧНІ, ГІСТОЛОГІЧНІ, ГІСТОХІМІЧНІ ТА КЛІНІЧНІ АСПЕКТИ ГЕПАТОТОКСИЧНОСТІ, СПРИЧИНЕНОЇ ІНТОКСИКАЦІЄЮ СПОЛУКАМИ СВИНЦЮ І КАДМІЮ


Про автора:

Нефьодова О. О., Янушкевич К. С., Кушнарьова К. А., Колосова І. І., Великодна-Танасійчук О. В., Адегова Л. Я.

Рубрика:

ОГЛЯДИ ЛІТЕРАТУРИ

Тип статті:

Наукова стаття

Анотація:

Резюме. Важливою науковою проблемою сучасності є питання про можливість і механізми регулювання рівня здоров’я населення шляхом впливу на якість середовища проживання, контамінація якого на сучасному етапі розвитку науки і техніки стала глобальним, стабільним, а також постійно діючим фактором. Пріоритетними забруднювачами навколишнього середовища, зазначеними в «Переліку контрольованих токсичних субстанцій» Агентства з охорони навколишнього середовища США (United States Environmental Protection Agency, US EPA), вважаються важкі метали, зокрема, сполуки свинцю і кадмію. Однією з основних «мішеней» Pb/Cd-індукованої токсичності є тканина печінки. Центральною ланкою прямого гепатотоксичного впливу свинцю і кадмію вважається активація процесів ліпопероксидації з одночасним зниженням активності ферментів антиоксидантного захисту, що супроводжується змінами біохімічних показників крові – збільшенням концентрації загального білірубіну, аланінамінотрансферази, γ-глутамілтранспептидази і лужної фосфатази. Крім того, зазначені токсиканти конкурують з ессенціальними металами (цинком, селеном, міддю), витісняючи їх з металомістких комплексів, викликають порушення метаболізму, пригнічення генерування енергії мітохондріями і зниження енергетичного потенціалу клітин, впливають на системи відновлення ДНК та змінюють міжклітинну адгезію. Патоморфологічним свідченням наявності Pb/Cd-асоційованої гепатоцелюлярної травми вважають загальну гідропічну і локальну балонну дистрофію гепатоцитів, розвиток моноцелюлярних осередків некробіозу і некрозу клітин печінки з реактивною інфільтрацією лімфоцитами і макрофагами, явищ перипортального фіброзу і вакуолярної дегенерації, нерівномірне розширення просвіту синусоїдів та суттєве збільшення їх об’ємної щільності. Перспективним напрямком корекції проявів Pb/Cd-індукованої гепатотоксичності є пошук та застосування біологічних антагоністів кадмію та свинцю, які викликають активацію системи антиоксидантного захисту та зменшення генерації активних форм кисню, конкурують з токсикантами за систему іонних транспортерів, а також сприяють прямій та опосередкованій індукції металотіонеїнів. Застосування препаратів біометалів (цинку, заліза, магнію) попереджує, ослабляє або ж повністю усуває розвиток Pb/Cdіндукованих несприятливих специфічних і неспецифічних ефектів на органному, клітинному та молекулярному рівнях.

Ключові слова:

середовище проживання, кадмій, свинець, гепатотоксичність, АФК, металотіонеїни, біометали.

Список цитованої літератури:

  1. Boichuk YuD. Zahalna teoriia zdorovia ta zdoroviazberezhennia: kolektyvna monohrafiia. Kharkiv: Vyd. Rozhko S.H.; 2017. 488 s. [in Ukrainian].
  2. Koshel AIu. Vplyv navkolyshnoho seredovyshcha na zdorovia liudyny. V: Tytarenko VP, Khlopov AM, redactory. Zbirnyk nauk. prats Vseuk. nauk.-prakt. konf., prysviachenoi Vsesvitnomu Dniu tsyvilnoi oborony ta Vsesvitnomu Dniu okhorony pratsi Bezpeka zhyttia i diialnosti liudyny: teoriia ta praktyka; 2019 Kvit 25-26; Poltava. Poltava: PNPU; 2019. s. 477-84. [in Ukrainian].
  3. Golikov RA, Surzhikov DV, Kislitsyina VV, Shtayger VA. Vliyanie zagryazneniya okruzhayuschey sredyi na zdorove naseleniya (obzor literatury). Nauchnoe obozrenie. Meditsinskie nauki. 2017;5:20-31. [in Russian].
  4. United States Environmental Protection Agency. Chemicals and Toxics Topics [Internet]. USA: EPA; 2021 [updated 2021 Apr 29]. Available from: https://www.epa.gov/environmental-topics/chemicals-and-toxics-topics.
  5. Onischenko GG, redactor. Gigienicheskaya indikatsiya posledstviy dlya zdorovya pri vneshnesredovoy ekspozitsii himicheskih faktorov. Perm: Knizhnyiy format; 2011. 532 s. [in Russian].
  6. Mezhgosudarstvennaya sistema standartizatsii. Vrednyie veschestva. Klassifikatsiya i obschie trebovaniya bezopasnosti. GOST 12.1.007- 76 [Internet]. Moskva: IPK Izdatel’stvo standartov; 2011 [updated 2011 Trav 31]. Dostupno: www.tehlit.ru. [in Russian].
  7. Skugoreva SG, Ashihmina TYa, Fokina AI, Lyalina EI. Himicheskie osnovyi toksicheskogo deystviya tyazhYolyih metallov (obzor). Teoreticheskaya i prikladnaya ekologiya. 2016;1:4-13. [in Russian].
  8. Amin I, Hussain I, Rehman MU, Mir BA, Ganaie SA, Ahmad SB, et al. Zingerone prevents lead-induced toxicity in liver and kidney tissues by regulating the oxidative damage in Wistar rats. Jour Food Biochem. 2021;45(3):e13241.
  9. Fan Y, Zhao X, Yu J, Xie J, Li C, Liu D, et al. Lead-induced oxidative damage in rats/mice: A meta-analysis. Jour Trace Elem Med Biol. 2020;58:126443
  10. González Rendón ES, Cano GG, Alcaraz-Zubeldia M, Garibay-Huarte T, Fortoul TI. Lead inhalation and hepatic damage: Morphological and functional evaluation in mice. Toxicol Ind Health. 2018;34(2):128-38.
  11. Eluwole OA. Lead-Induced Hepatorenal Injury: Ameliorative and Protective Antidotes. J Pharma Care Health Sys. 2020;7(221):1-5.
  12. Kojima M, Masui T, Nemoto K, Degawa M. Lead nitrate-induced development of hypercholesterolemia in rats: sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis. Toxicol Lett. 2004;154(1.2):35-44.
  13. Berrahal AA, Lasram M, El Elj N, Kerkeni A, Gharbi N, El-Fazâa S. Effect of age-dependent exposure to lead on hepatotoxicity and nephrotoxicity in male rats. Environ Toxicol. 2011;26(1):68-78.
  14. Jarrar BM, Taib NT. Histological and histochemical alterations in the liver induced by lead chronic toxicity. Saudi J Biol Sci. 2012;19(2): 203-10.
  15. Aleksiichuk V, Omelchuk S, Sokurenko L, Kaminsky R, Kovalchuk O, Chaikovsky Y. The influence of lead nanoparticles on the morphofunctional changes of rat liver during the postexposure period. Microsc Res Tech. 2018;81(7):781-8.
  16. Mohammed GM, Sedky A, Elsawy H. A Study of the Modulating Action of Quercetin on Biochemical and Histological Alterations Induced by Lead Exposure in the Liver and Kidney of Rats. Chin J Physiol. 2017;60(3):183-90.
  17. Hegazy A, Fouad U. Evaluation of Lead Hepatotoxicity; Histological, Histochemical and Ultrastructural Study. Forensic Medicine and Anatomy Research. 2014;2:70-9.
  18. Aksu DS, Sağlam YS, Yildirim S, Aksu T. Effect of pomegranate (Punica granatum L.) juice on kidney, liver, heart and testis histopathological changes, and the tissues lipid peroxidation and antioxidant status in lead acetate-treated rats. Cell Mol Biol (Noisy-le-grand). 2017;63(10): 33-42.
  19. Rajakumar S, Abhishek A, Selvam GS, Nachiappan V. Effect of cadmium on essential metals and their impact on lipid metabolism in Saccharomyces cerevisiae. Cell Stress Chaperones. 2020;25(1):19-33.
  20. Arroyo VS, Flores KM, Ortiz LB, Gómez-Quiroz LE, Gutiérrez-Ruiz MC. Liver and Cadmium Toxicity. J Drug Metab Toxicol. 2012;5:1-7.
  21. Ponce E, Louie MC, Sevigny MB. Acute and chronic cadmium exposure promotes E-cadherin degradation in MCF7 breast cancer cells. Mol Carcinog. 2015;54(10):1014-25.
  22. Yamano T, DeCicco LA, Rikans LE. Attenuation of cadmium-induced liver injury in senescent male fischer 344 rats: role of Kupffer cells and inflammatory cytokines. Toxicol Appl Pharmacol. 2000;162(1):68-75.
  23. Mousa SA. Expression of adhesion molecules during cadmium hepatotoxicity. Life Sci. 2004;75(1):93-105.
  24. Hao R, Ge J, Ren Y, Song X, Jiang Y, Sun-Waterhouse D, et al. Caffeic acid phenethyl ester mitigates cadmium-induced hepatotoxicity in mice: Role of miR-182-5p/TLR4 axis. Ecotoxicol Environ Saf. 2021;207:111578.
  25. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The Effects of Cadmium Toxicity. Int J Environ Res Public Health. 2020;17(11):3782.
  26. Salama SA, Arab HH, Hassan MH, Al Robaian MM, Maghrabi IA. Cadmium-induced hepatocellular injury: Modulatory effects of γ-glutamyl cysteine on the biomarkers of inflammation, DNA damage, and apoptotic cell death. J Trace Elem Med Biol. 2019;52:74-82.
  27. Wang J, Zhu H, Liu X, Liu Z. Oxidative stress and Ca(2+) signals involved on cadmium-induced apoptosis in rat hepatocyte. Biol Trace Elem Res. 2014;161(2):180-9.
  28. Ahamed M, Akhtar MJ, Alhadlaq HA. Influence of silica nanoparticles on cadmium-induced cytotoxicity, oxidative stress, and apoptosis in human liver HepG2 cells. Environ Toxicol. 2020;35(5):599-608.
  29. Zhang S, Che L, He C, Huang J, Guo N, Shi J, et al. Drp1 and RB interaction to mediate mitochondria-dependent necroptosis induced by cadmium in hepatocytes. Cell Death Dis. 2019;10(7):523.
  30. Thévenod F, Lee WK. Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol. 2013;87(10):1743-86.
  31. Lawal AO, Marnewick JL, Ellis EM. Heme oxygenase-1 attenuates cadmium-induced mitochondrial-caspase 3- dependent apoptosis in human hepatoma cell line. BMC Pharmacol Toxicol. 2015;16:41.
  32. Mazzei V, Longo G, Brundo MV, Sinatra F, Copat C, Oliveri Conti G, et al. Bioaccumulation of cadmium and lead and its effects on hepatopancreas morphology in three terrestrial isopod crustacean species. Ecotoxicol Environ Saf. 2014;110:269-79.
  33. Salomeina NV, Mashak SV, Dyakon VV, Kolmakova OA, Ohotina AA. Morfologicheskie izmeneniya pecheni beremennyih kryis pri vvedenii razlichnyih doz kadmiya. Journal of Siberian Medical Sciences. 2015;3:92. [in Russian].
  34. Elyasin PA, Zalavina SV, Mashak AN, Ravilova YuR, Pervoykin DM, Nadeev AP, et al. Klassicheskaya dolka pecheni kak model issledovaniya vozdeystviya subtoksichnyih doz kadmiya. Ekologiya cheloveka. 2018;1:47-52. [in Russian].
  35. Binte Hossain KF, Rahman MM, Sikder MT, Saito T, Hosokawa T, Kurasaki M. Inhibitory effects of selenium on cadmium-induced cytotoxicity in PC12 cells via regulating oxidative stress and apoptosis. Food Chem Toxicol. 2018;114:180-9.
  36. Wani AL, Ahmad A, Shadab GG, Usmani JA. Possible role of zinc in diminishing lead-related occupational stress-a zinc nutrition concern. Environ Sci Pollut Res Int. 2017;24(9):8682-91.
  37. Shatorna VF, Nefodova OO, Harets VI, Halperin OI, Deforzh HV, Hruzd VV, et al. Eksperymentalne vyznachennia vplyvu tsytrativ metaliv na embriotoksychnist solei kadmiiu v embriohenezi shchura. Svit medytsyny ta biolohii. 2019;2:210-4. [in Ukrainian].
  38. Yu HT, Zhen J, Leng JY, Cai L, Ji HL, Keller BB. Zinc as a countermeasure for cadmium toxicity. Acta Pharmacol Sin. 2021;42(3):340-6.
  39. Homma K, Fujisawa T, Tsuburaya N, Yamaguchi N, Kadowaki H, Takeda K, et al. SOD1 as a molecular switch for initiating the homeostatic ER stress response under zinc deficiency. Mol Cell. 2013;52(1):75-86.
  40. Aiba I, Hossain A, Kuo MT. Elevated GSH level increases cadmium resistance through down-regulation of Sp1-dependent expression of the cadmium transporter ZIP8. Mol Pharmacol. 2008;74(3):823-33.
  41. Jihen el H, Fatima H, Nouha A, Baati T, Imed M, Abdelhamid K. Cadmium retention increase: a probable key mechanism of the protective effect of zinc on cadmium-induced toxicity in the kidney. Toxicol Lett. 2010;196(2):104-9.
  42. Jacquillet G, Barbier O, Cougnon M, Tauc M, Namorado MC, Martin D, et al. Zinc protects renal function during cadmium intoxication in the rat. Am J Physiol Renal Physiol. 2006;290(1):127-37.
  43. Adamczyk-Szabela D, Lisowska K, Romanowska-Duda Z, Wolf WM. Combined cadmium-zinc interactions alter manganese, lead, copper uptake by Melissa officinalis. Sci Rep. 2020;10(1):1675.
  44. Li B, Wang X, Qi X, Huang L, Ye Z. Identification of rice cultivars with low brown rice mixed cadmium and lead contents and their interactions with the micronutrients iron, zinc, nickel and manganese. J Environ Sci (China). 2012;24(10):1790-8.
  45. Grosicki A. Influence of Magnesium on the Deposition of Cadmium in Rats. Bulletin of the Veterinary Institute in Pulawy. 2012;56(4):591-4.
  46. Babaknejad N, Moshtaghie AA, Nayeri H, Hani M, Bahrami S. Protective Role of Zinc and Magnesium against Cadmium Nephrotoxicity in Male Wistar Rats. Biol Trace Elem Res. 2016;174(1):112-20.
  47. Obaiah J, Usha Rani A. Mitigating role of zinc and iron against cadmium induced toxicity in liver and kidney of male albino rat: A study with reference to metallothionein quantification. International Journal of Pharmacy and Pharmaceutical Sciences. 2014;6(9):411-7.
  48. Qiang W, Huang Y, Wan Z, Zhou B. Metal-metal interaction mediates the iron induction of Drosophila MtnB. Biochem Biophys Res Commun. 2017;487(3):646-52.
  49. Adi PJ, Burra SP, Vataparti AR, Matcha B. Calcium, zinc and vitamin E ameliorate cadmium-induced renal oxidative damage in albino Wistar rats. Toxicol Rep. 2016;3:591-7.
  50. Zhu QL, Li WY, Zheng JL. Life-cycle exposure to cadmium induced compensatory responses towards oxidative stress in the liver of female zebrafish. Chemosphere. 2018;210:949-57.

Публікація статті:

«Вістник проблем біології і медицини» Випуск 2 (160), 2021 рік , 39-44 сторінки, код УДК 616.36-002:546.81+546.48:612.354]-036-091.8-092.18

DOI: